Мобильная версия

Электронная библиотека

Программисту веб-дизайнеру

Другие материалы

Бесплатная электронная библиотека. Скачать книги DJVU, PDF бесплатно
А.Н. Колмогоров, Основные понятия теории вероятностей

Бесплатно скачать книгу, объем 1.90 Мб, формат .djvu
Серия: теория вероятностей и математическая статистика, 1974 год

I. Элементарная теория вероятностей
§ 1. Аксиомы
§ 2. Отношение к данным опыта
§ 3. Терминологические замечания
§ 4. Непосредственные следствия из аксиом, условные вероятности, теорема Байеса
§ 5. Независимость
§ 6. Условные вероятности как случайные величины; цепи Маркова

II. Бесконечные поля вероятностей
§ 1. Аксиома непрерывности
§ 2. Борелевские поля вероятностей
§ 3. Примеры бесконечных полей вероятностей

III. Случайные величины
§ 1. Вероятностные функции
§ 2. Определение случайных величин, функции распределения
§ 3. Многомерные функции распределения
§ 4. Вероятности в бесконечномерных пространствах
§ 5. Эквивалентные случайные величины, разные виды сходимости

IV. Математические ожидания
§ 1. Абстрактные интегралы Лебега
§ 2. Абсолютные и условные математические ожидания
§ 3. Неравенство Чебышева
§ 4. Некоторые признаки сходимости
§ 5. Дифференцирование и интегрирование математических ожиданий по параметру

V. Условные вероятности и математические ожидания
§ 1. Условные вероятности
§ 2. Объяснение одного парадокса Бореля
§ 3. Условные вероятности относительно случайной величины
§ 4. Условные математические ожидания

VI. Независимость. Закон больших чисел
§ 1. Независимость
§ 2. Независимые случайные величины
§ 3. Закон больших чисел
§ 4. Замечания к понятию математического ожидания
§ 5. Усиленный закон больших чисел, сходимость рядов

Дополнение. Одна замечательная теорема теории вероятностей

Краткая аннотация книги

Книга, изданная в 1933 г. на немецком языке и в 1936 г. на русском, несколько раз переиздавалась в английском переводе. Хотя значительная часть со содержания включена в учебники, она сохраняет интерес для лиц, занимающихся обстоятельно теорией вероятностей. Основной текст переиздается лишь с небольшой редакционной правкой.

Целью предлагаемой работы является аксиоматическое обоснование теории вероятностей. Ведущей мыслью автора было при этом естественное включение основ теории вероятностей, считавшихся еще недавно совершенно своеобразными, в ряд общих понятий современной математики. До возникновения лебеговой теории меры и интеграла эта задача была почти безнадежна. После исследований Лебега стала ясной аналогия между мерой множества и вероятностью события, а также между интегралом от функции и математическим ожиданием случайной величины. Эта аналогия допускает и дальнейшее продолжение: так, например, многие свойства независимых случайных величин вполне аналогичны соответствующим свойствам ортогональных функций. Для того чтобы, исходя из этой аналогии, обосновать теорию вероятностей, следовало еще освободить теорию меры и теорию интегрирования от геометрических элементов, которые еще имелись у Лебега. Это освобождение было осуществлено Фреше.

Попытки построения основ теории вероятностей, исходящие из этой общей точки зрения, уже имеются, и весь круг идей, излагаемых здесь, уже успел приобрести известную популярность в узком кругу специалистов; однако отсутствовало полное и свободное от излишних усложнений изложение всей системы (подготовляется, впрочем, к печати книга Фреше).

Я хотел бы еще указать здесь на те места в дальнейшем изложении, которые выходят за пределы упомянутого выше круга идей, уже достаточно знакомого в общих чертах специалистам. Эти места следующие: распределения вероятностей в бесконечномерных пространствах (глава третья, § 4), дифференцирование и интегрирование математических ожиданий по параметру (глава четвертая, § 5) и особенно теория условных вероятностей и математических ожиданий (глава пятая). Следует при этом отметить, что все эти новые понятия и проблемы с необходимостью возникают при рассмотрении вполне конкретных физических задач.

Шестая глава содержит обзор отдельных результатов А. Я. Хинчппа и автора, касающихся условий применимости простого и усиленного закона больших чисел. В списке литературы приведены некоторые новые работы, представляющие интерес с точки зрения вопросов обоснования теории вероятностей. Приношу свою сердечную благодарность А.Я. Хипчину, внимательно прочитавшему всю рукопись и предложившему целый ряд улучшений.

С первого немецкого издания этой книжки прошло сорок лет. Было решено, тем не менее, не подвергать ее существенной переработке. А. Н. Ширяевым и мною внесены небольшие усовершенствования изложения. Модернизированы некоторые обозначения. Для некоторых теорем § 3 - 5 главы VI даны доказательства, отредактированные А. Н. Ширяевым по моим работам 1925-1930 годов. В современных учебниках эти теоремы обычно доказываются с помощью аппарата характеристических функций. Мои первоначальные доказательства прямыми, элементарными средствами, может быть, сохраняют некоторый интерес.

Примечание. Сохраняйте книги на мобильный телефон и скачивайте их с Вашего телефона на компьютер. Удобное скачивание книг через мобильный телефон (в память телефона) и на Ваш компьютер через мобильный интерфейс. Быстрый Интернет без излишних тэгов. Материал носит неофициальный характер и приведен для ознакомления. Прямые ссылки на файлы книг запрещены.

Мобильная версия

Сайт для компьютера
http://www.mat.net.ua