Бесплатно скачать книгу, 1.52 Мб, формат .djv
Алгебра для начинающих в элементарном изложении, 1998 год
Уважаемые дамы и господа !! Для того, чтобы без "глюков" скачать файлы электронных публикаций, нажмите на подчеркнутую ссылку с файлом ПРАВОЙ кнопкой мыши, выберите команду "Save target as ..." ("Сохранить объект как ...") и сохраните файл электронной публикации на локальный компьютер. Электронные публикации обычно представлены в форматах Adobe PDF и DJVU.
Глава 1. Алгебраические структуры
§ 1.1. Введение
§ 1.2. Абелевы группы
§ 1.3. Кольца и поля
§ 1.4. Подгруппы, подкольца и подполя
§ 1.5. Поле комплексных чисел
§ 1.6. Кольца вычетов
§ 1.7. Векторные пространства
§ 1.8. Алгебры
§ 1.9. Алгебра матриц
Глава 2. Начала линейной алгебры
§ 2.1. Системы линейных уравнений
§ 2.2. Базис и размерность векторного пространства
§ 2.3. Линейные отображения
§ 2.4. Определители
§ 2.5. Некоторые приложения определителей
Глава 3. Начала алгебры многочленов
§ 3.1. Построение и основные свойства алгебры многочленов § 3.2. Общие свойства корней многочленов
§ 3.3. Основная теорема алгебры комплексных чисел
§ 3.4. Корни многочленов с действительными коэффициентами
§ 3.5. Теория делимости в евклидовых кольцах
§ 3.6. Многочлены с рациональными коэффициентами
§ 3.7. Многочлены от нескольких переменных
§ 3.8. Симметрические многочлены
§ 3.9. Кубические уравнения
§ 3.10. Поле рациональных дробей
Глава 4. Начала теории групп
§ 4.1. Определение и примеры
§ 4.2. Группы в геометрии и физике
§ 4.3. Циклические группы
§ 4.4. Системы порождающих
§ 4.5. Разбиение на смежные классы
§ 4.6. Гомоморфизмы
Краткая аннотация книги
Настоящая книга написана по мотивам лекций, прочитанных автором студентам 1 курса Математического колледжа НМУ в осеннем семестре 1992/93 учебного года. Конспективное изложение этих лекций было опубликовано тогда же. Настоящая книга существенно отличается от него, во-первых, степенью подробности, позволяющее пользоваться ею как учебником, и, во-вторых, тем, что в ней добавлены начала линейной алгебры и некоторые другие более мелкие разделы (но кое-что и выкинуто, например, факторкольца). При ее написании автор опирался на свой 35-летний опыт преподавания алгебры на механико-математическом факультете МГУ.
Нумерация теорем, предложений, лемм, примеров, задач и замечаний производится в пределах каждого параграфа. Система ссылок поясняется следующими примерами: в тексте §3.2 "теорема 1" означает теорему 1 того же параграфа, "теорема 1.4" - теорему 4 §3.1, а "теорема 1.4.2" - теорему 2 §1.4.
Когда вы знакомитесь с новыми людьми, вы прежде всего запоминаете их имена и внешность. После этого, встречаясь с ними в разных ситуациях, вы постепенно узнаете их лучше и некоторые из них, может быть, становятся вашими друзьями.
В этой главе состоится лишь внешнее знакомство читателя с многими из алгебраических структур, рассматриваемых в курсе. Более глубокое их понимание будет приходить в процессе дальнейшего чтения книги и решения задач.
Если вообще можно четко определить предмет алгебры, то это изучение алгебраических структур - множеств с определенными в них операциями. Под операцией в множестве М понимается любое отображение М х М -> М.
т. е. правило, по которому из любых двух элементов множества М получается некоторый элемент этого же множества. Элементами множества М могут быть как числа, так и объекты другого рода.
Хорошо известными и важными примерами алгебраических структур являются следующие числовые множества с операциями сложения и умножения:
N - множество натуральных чисел,
Z+ = N U {0} - множество неотрицательных целых чисел,
Z - множество всех целых чисел,
Q - множество рациональных чисел,
R+ - множество неотрицательных действительных чисел,
R - множество всех действительных (= вещественных) чисел.
Подчеркнем, что операции сложения и умножения определены далеко не на всяком числовом множестве. Например, в множестве отрицательных чисел не определена операция умножения, так как произведение двух отрицательных чисел является положительным числом. В множестве иррациональных чисел не определены ни сложение, ни умножение, так как сумма и произведение двух иррациональных чисел могут быть рациональными. И т.д. читайте книгу.
Вы можете использовать скачанные с веб-сайта книги и другие материалы только для личного ознакомления. Авторское право авторов книг и любых электронных приложений к ним (в том числе фото, видео, рукописи, архивы и прочее) не подлежит патентованию и подобным "искусственным" дополнительным мерам защиты авторского права - не патентуют рукописи, фотографии, видеоматериалы, формулы, графики, сводные таблицы, тексты монографий, черновики и оригинальные издания вне зависимости от того, находятся ли они в частных или государственных архивах любой страны. Вне зависимости от того, есть ли у книги или рукописи и автора какие-либо коды или нет, подписаны они или нет, известен автор или нет, является он(а) гражданином Украины или иностранцем - запрещено явным образом присваивать чужое авторское право и ставить чужие ФИО в чужих работах и трудах (в случае неуказанного, неустановленного или сомнительного авторства наиболее предпочтительно использовать анонимность - это корректно, этично и непротивозаконно, так как в этом случае истинные владельцы будут поданы в розыск и объективно установленны в своих правах независимой комиссией).
Сегодня электронный вариант публикации приравнен к печатной бумажной форме распространения информации (требования аналогичны). Наиболее предпочтительными являются международные форматы публикаций PDF и DJVU (они лучше всего защищены от сторонних модификаций - изменения в них могут внести только профессионалы), допускаются и другие общепринятые и широко распространенные форматы электронного представления авторской или смежной информации. Помните, что один человек сам по себе ничего не делает и не решает - у любого автора любого издания есть коллеги, единомышленники, соратники, кураторы, преподаватели, наставники, идейные, политические и научные руководители и вдохновители, предшественники и приемники, завистники и плагиаторы, желающие незаконно "упасть на хвост и поехать", "присоседиться к работе" и "присоединиться". Чем серьезнее ученый и чем более масштабные объективные и фундаментальные работы он(а) реально ведет, тем большее количество мошенников и аферистов желает незаконно "находиться" и "быть рядом" с таким человеком, его деньгами, премиями, подарками и другими объективными поощрениями. Поэтому все подобные аферисты и мошенники, как и их голословные заявления, подлежат строгой проверке на практике как гласными, так и негласными методами государственного, общественного и политического независимого контроля (в том числе судебного и силового).
Вам разрешается использовать электронные публикации и иные материалы только для личного ознакомления. Никаких дополнительных прав и свобод (в том числе авторских и коммерческих прав, в том числе права на коммерческое распространение) получение и обладание электронной и иной публикации и материалов Вам не предоставляет. Вам не дает никаких прав, в т.ч. авторских и смежных прав, личное знакомство с автором и правообладателем, совместное проживание, учеба или работа, семейный и иной статус, совместное хобби и увлечения, посещение одних и тех же мероприятий, встречи, конфликты и даже отсутствие таковых. Вы не имеете право продавать электронные публикации и иные авторские материалы, отчуждать их от владельца и извлекать материальную выгоду от владения электронной и иной формой представления авторской информации. Отчуждение авторского научного и творческого права запрещено вне зависимости от срока давности издания, способа и места его хранения, разрекламированности, известности или неизвестности и даже анонимности автора и соавтора, гражданства, здоровья, болезни и любого другого объективного статуса реального правообладателя. Запрещены фото- и видеомонтажи, врезки и изъятия, компиляция из сторонних источников и другие формы заведомого мошенничества. Запрещено иностранцам без признанной в Украине и документально подтвержденной профессии, без легитимных виз и специальных персонифицированных межгосударственных соглашений занимать рабочие места граждан Украины на территории Украины и во всех предприятиях, которые являются собственностью Украины и ее граждан вне зависимости от места регистарции и дислокации этих предприятий. Запрещено работать без рабочих виз на территории Украины гражданам и подданым стран, с которыми у Украины установлен визовый режим.
Авторское право (особенно научное и творческое) никогда не патентуется, не отчуждается ни при каких обстоятельствах, не продается и не покупается и является неотъемлимым от его создателя при любых обстоятельствах - патентуются только уникальные инженерные и программные разработки, авторские алгоритмы, изобретения и подобные материалы, содержащие более 60% объективно признанных независимой государственной экспертной комиссией авторских инноваций. Незаконным является присвоение себе чужих архивов, черновиков, заметок, аудио, фото и видеоматериалов (даже если вы не знаете их автора или же непосредственно знакомы с создателем и правообладателем, это ничего не решает). Научное и творческое авторское право не отчуждается от автора и создателя и никогда не делегируется третьим лицам (особенно без профессии и неконтрафактных документов) - оно является наиболее строгим авторским правом, неотделимым от своего создателя, и не подлежит передаче, купле и продаже ни при каких обстоятельствах. Оно только может быть передано в возмездное или безвозмездное пользование БЕЗ ПРАВА НА ОТЧУЖДЕНИЕ. Главной особенностью научного и творческого авторского права является его обязательная частичная передача в безвозмездное пользование широким слоям заинтересованного населения - на этом сайте все научные книги бесплаты и свободны для скачивания без паролей, кодов и ограничений (я как владелец этого сайта и интернет-хостинг-провайдеры не несем ответственность за деятельность третьих лиц, возможные сбои и технические нарушения интернет-связи при пользовании сайтами по вине третьих лиц). Никаких искусственных препятствий, ограничений скорости, других "негативов" и препятствий мы не устанавливаем.
Государство Украина имеет достаточную базу для обеспечения научных работ и научных исследований по всем законным направлениям научной деятельности. C 2010 г. в Украине любая наука и научные исследования являются объектами строгой государственной монополии и требуют наличия не только документально признанной в Украине профессии, но и высшего государственного образования, официально признанного в Украине.