Бесплатно скачать книгу, объем 1.16 Мб, формат .djvu
Рассчитано на лиц со средним образованием (элементарное изложение), Москва, 1981
Уважаемые дамы и господа !! Для того, чтобы без "глюков" скачать файлы электронных публикаций, нажмите на подчеркнутую ссылку с файлом ПРАВОЙ кнопкой мыши, выберите команду "Save target as ..." ("Сохранить объект как ...") и сохраните файл электронной публикации на локальный компьютер. Электронные публикации обычно представлены в форматах Adobe PDF и DJVU.
§ 1. Логические операции
1. Высказывания н высказывательные формы (7).
2. Элементарные и составные предложения (8).
3. Конъюнкция и дизъюнкция (10).
4. Отрицание (13).
5. Импликация и эквиваленция (15).
§ 2. Язык логики высказываний
1. Формулы логики высказываний (18).
2. Язык и метаязык (21).
3. Составление таблиц истинности для данных формул (24).
4. Тавтологии (27).
§ 3. Логическая равносильность
1. Равносильность формул логнкн высказываний (28).
2. Законы логики (30).
3. Равносильные преобразования. Упрощение формул (32).
4. Выражение импликации и эквнваленции через конъюнкцию, дизъюнкцию и отрицание (35).
§ 4. Обратные и противоположные предложения
1. Обратные предложения (38).
2. Противоположные предложения (39). 3 Закон контрапозицни (40).
4. Достаточные и необходимые условия (41).
5. Структура определений (42).
§ 5. Логическое следование
1. Отношение следования между формулами логики высказываний (44).
2. Правильные и неправильнее аргументы (46).
3. Сокращенный способ проверки аргументов (49).
§ 6. Нормальные формы
1. Составление формул по заданным таблицам истинности (52).
2. Нормальные формы. Приведение формул к совершенным нормальным формам с помощью равносильных преобразований (54).
3. Получение следствий из данных посылок (58).
§ 7. Переключательные схемы
1. Описание переключательных схем с помощью формул логнкн высказываний (61).
2. Анализ, упрощение и синтез переключательных схем (63).
§ 8. Предикаты и высказывательные формы
1. Недостаточность логики высказываний (66).
2. Предикаты и способы их задания (67).
3. Множество истинности предиката (72).
4. Равносильность высказыватель-иых форм (74).
5. Логические операции и операции иад множествами (76).
6. Следование в включение (82).
§ 9. Свойства и отношения
1. Свойства как одноместные предикаты (85).
2. Классификация (86).
3. Отношения как многоместные предикаты (88).
4. Свойства бинарных отношений (89).
5. Отношения эквивалентности и отношения порядка (92).
§ 10. Кванторы
1. Кванторы общности и существования (94).
2. Кванти-фикация многоместных высказывательиых форм (97).
3. Отрицание предложений с кванторами (100).
4. Численные кванторы (102).
5. Символическая запись определений и теорем (104).
§ 11. Формулы логики предикатов
Краткая аннотация книги
Книга предназначена для учащихся по специальности "Прикладная математика" и содержит теоретический материал, соответствующий программе курса "Математическая логика", а также упражнения для активного усвоения курса и приобретения необходимых навыков. Изложение базируется на знаниях по математике, полученных учащимися в средней школе, и на усвоенных ими языковых нормах. Предназначается для учащихся средних специальных учебных заведений и непрофильных вузов.
Эта книга предназначена для учащихся техникумов по специальности "Прикладная математика". Ее содержание соответствует программе курса "Математическая логика", на изучение которого отводится 36 часов в начале первого года обучення.
Этот курс призван повысить общую культуру мышления учащихся и тем самым подготовить их к сознательному и глубокому усвоению математических дисциплин общего и- специального циклов. Знакомство с языком1 математической логики и некоторыми ее методами поможет учащимся приобрести навыки правильного рассуждения, отчетливых формулировок, краткой я корректной записи математических предложений. В этом смысле курс является скорее "гуманитарным:", нежели математическим, а его название "Математическая логика" - всего лишь дань традиции, согласно которой учебные, общеобразовательные курсы, излагающие азы, элементы какой-либо науки, именуются так же, как и сама эта наука.
В книге содержится необходимый минимум теоретических сведений и набор упражнений и задач для активного усвоения материала, закрепления и повторения. При изучений курса целесообразно не отделять изложенне теории от практнческнх занятий, а перемежать нх в рамках одного урока. Символика, используемая в книге, согласована с символикой действующих школьных учебников математики.
Слово "логика" и производные от него часто можно встретить на страницах, всевозможных печатных изданий и услышать в разговорной речи. Каков же смысл этого слова? Заглянем в толковый словарь С. И. Ожегова. Там сказано: "Логика - наука о законах мышления и его формах" и еще: "Логика - ход рассуждений, умозаключений". Слово "логика" происходит от греческого "логос", что, с одной стороны, означает "слово" или "речь", а с другой - то, что выражается в речи, т. е. мышление. Логика изучает лишь те акты мышления, которые фиксированы в языке в виде слов, предложений и их совокупностей. Таким образом, логика имеет непосредственное отношение к языку, речи. Поэтому логика соприкасается с грамматикой и, более широко, с лингвистикой (наукой о языке). С помощью логических средств наш естественный язык уточняется, приобретает четкость и определенность.
Логика как наука сформировалась очень давно - в IV в. до н. э. Ее создал древнегреческий ученый Аристотель. В течение многих веков логика почти совсем не развивалась. Это, конечно, свидетельствует о гениальности Аристотеля, которому удалось создать столь полную научную систему, что, казалось, "не убавить, не прибавить". Однако в силу такой неизменности логика приобрела славу мертвой, застывшей науки и вызывала у многих скептическое к себе отношение. Сухость и видимую бесплодность логики высмеивали Рабле, Свифт и др.
В XVII в. великий немецкий ученый Лейбниц задумал создать новую логику, которая была бы "искусством исчисления". В этой логике, по мысли Лейбница, каждому понятию соответствовал бы символ, а рассуждения имели бы вид вычислений. Эта идея Лейбница, не встретив понимания современников, не получила распространения и развития. Только в середине XIX в. ирландский математик Дж. Буль частично воплотил в жизнь идею Лейбница. Им была создана алгебра логики (Булева алгебра), в которой действуют законы, схожие с законами обычной алгебры, но буквами обозначаются не числа, а предложения. На языке булевой алгебры можно описывать рассуждения и "вычислять" их результаты; однако ею охватываются далеко не всякие рассуждения, а лишь определенный тип их, в некотором смысле - простейший.
Алгебра логики Буля явилась зародышем новой науки - математической логики. В отличие от нее логику, восходящую к Аристотелю, называют традиционной формальной логикой. В названии "математическая логика" отражены две характерные черты этой науки: во-первых, математическая логика - это логика, использующая язык и методы математики; во-вторых, математическая логика была вызвана к жизни потребностями математики.
В конце XIX в. у математиков появилась надежда навести порядок в своей науке, которая так разрослась, что представители различных ее областей стали зачастую плохо понимать друг друга: созданная Г. Кантором теория множеств представлялась надежным фундаментом для построения единого и прочного математического здания. При попытках реализовать эту идею возникли трудности логического характера, которые оказалось невозможным преодолеть средствами традиционной формальной логики. Эти трудности окончательно не преодолены и по сей день, но попытки их преодоления дали мощный толчок становлению и развитию математической логики.
Математическая логика сама стала областью математики, поначалу казавшейся в высшей степени абстрактной и бесконечно далекой от практических приложений. Однако эта область недолго оставалась уделом "чистых" математиков. В начале нынешнего века П. С. Эренфест указал на возможность применения аппарата логики высказываний (раздела математической логики) в технике. В середине столетия была обнаружена теснейшая связь математической логики с новой наукой - кибернетикой. Эта связь открыла возможности многочисленных и разнообразных приложений математической логики. Достаточно сказать, что сегодня математическая логика используется в биологии, медицине, лингвистике, педагогике, психологии, экономике, технике. Чрезвычайно важна роль математической логики в развитии вычислительной техники: она используется в конструировании компьютерных процессоров и при разработке формальных языков общения с машинами.
Математическая логика уточнила и по-новому осветила понятия и методы традиционной формальной логики, существенно расширила ее возможности и сферу применимости. Большой вклад в развитие математической логики сделали ученые разных стран: Г. Фреге (1848-1925), Д. Гильберт (1862-1943), Д. Пеано (1858-1932), Б. Рассел (1872-1970), К. Гёдель (род. в 1906 г.), П. С. Новиков (1901-1975), А. Н. Колмогоров (род. в 1903 г.), Я. Лукасевич (1878-1956), А. Тарский (род. в 1901 г.), А. Чёрт (род. в 1903 г.), А. Тьюринг (1912- 1954), А. А. Марков (1903-1980), Н. А. Шанин (род. в 1919 г.) и др. Предлагаемый курс вводит в круг некоторых основных понятий и методов математической логики путем знакомства с первым и фундаментальным ее разделом - логикой высказываний и отдельными вопросами из других разделов.
Вы можете использовать скачанные с веб-сайта книги и другие материалы только для личного ознакомления. Авторское право авторов книг и любых электронных приложений к ним (в том числе фото, видео, рукописи, архивы и прочее) не подлежит патентованию и подобным "искусственным" дополнительным мерам защиты авторского права - не патентуют рукописи, фотографии, видеоматериалы, формулы, графики, сводные таблицы, тексты монографий, черновики и оригинальные издания вне зависимости от того, находятся ли они в частных или государственных архивах любой страны. Вне зависимости от того, есть ли у книги или рукописи и автора какие-либо коды или нет, подписаны они или нет, известен автор или нет, является он(а) гражданином Украины или иностранцем - запрещено явным образом присваивать чужое авторское право и ставить чужие ФИО в чужих работах и трудах (в случае неуказанного, неустановленного или сомнительного авторства наиболее предпочтительно использовать анонимность - это корректно, этично и непротивозаконно, так как в этом случае истинные владельцы будут поданы в розыск и объективно установленны в своих правах независимой комиссией).
Сегодня электронный вариант публикации приравнен к печатной бумажной форме распространения информации (требования аналогичны). Наиболее предпочтительными являются международные форматы публикаций PDF и DJVU (они лучше всего защищены от сторонних модификаций - изменения в них могут внести только профессионалы), допускаются и другие общепринятые и широко распространенные форматы электронного представления авторской или смежной информации. Помните, что один человек сам по себе ничего не делает и не решает - у любого автора любого издания есть коллеги, единомышленники, соратники, кураторы, преподаватели, наставники, идейные, политические и научные руководители и вдохновители, предшественники и приемники, завистники и плагиаторы, желающие незаконно "упасть на хвост и поехать", "присоседиться к работе" и "присоединиться". Чем серьезнее ученый и чем более масштабные объективные и фундаментальные работы он(а) реально ведет, тем большее количество мошенников и аферистов желает незаконно "находиться" и "быть рядом" с таким человеком, его деньгами, премиями, подарками и другими объективными поощрениями. Поэтому все подобные аферисты и мошенники, как и их голословные заявления, подлежат строгой проверке на практике как гласными, так и негласными методами государственного, общественного и политического независимого контроля (в том числе судебного и силового).
Вам разрешается использовать электронные публикации и иные материалы только для личного ознакомления. Никаких дополнительных прав и свобод (в том числе авторских и коммерческих прав, в том числе права на коммерческое распространение) получение и обладание электронной и иной публикации и материалов Вам не предоставляет. Вам не дает никаких прав, в т.ч. авторских и смежных прав, личное знакомство с автором и правообладателем, совместное проживание, учеба или работа, семейный и иной статус, совместное хобби и увлечения, посещение одних и тех же мероприятий, встречи, конфликты и даже отсутствие таковых. Вы не имеете право продавать электронные публикации и иные авторские материалы, отчуждать их от владельца и извлекать материальную выгоду от владения электронной и иной формой представления авторской информации. Отчуждение авторского научного и творческого права запрещено вне зависимости от срока давности издания, способа и места его хранения, разрекламированности, известности или неизвестности и даже анонимности автора и соавтора, гражданства, здоровья, болезни и любого другого объективного статуса реального правообладателя. Запрещены фото- и видеомонтажи, врезки и изъятия, компиляция из сторонних источников и другие формы заведомого мошенничества. Запрещено иностранцам без признанной в Украине и документально подтвержденной профессии, без легитимных виз и специальных персонифицированных межгосударственных соглашений занимать рабочие места граждан Украины на территории Украины и во всех предприятиях, которые являются собственностью Украины и ее граждан вне зависимости от места регистарции и дислокации этих предприятий. Запрещено работать без рабочих виз на территории Украины гражданам и подданым стран, с которыми у Украины установлен визовый режим.
Авторское право (особенно научное и творческое) никогда не патентуется, не отчуждается ни при каких обстоятельствах, не продается и не покупается и является неотъемлимым от его создателя при любых обстоятельствах - патентуются только уникальные инженерные и программные разработки, авторские алгоритмы, изобретения и подобные материалы, содержащие более 60% объективно признанных независимой государственной экспертной комиссией авторских инноваций. Незаконным является присвоение себе чужих архивов, черновиков, заметок, аудио, фото и видеоматериалов (даже если вы не знаете их автора или же непосредственно знакомы с создателем и правообладателем, это ничего не решает). Научное и творческое авторское право не отчуждается от автора и создателя и никогда не делегируется третьим лицам (особенно без профессии и неконтрафактных документов) - оно является наиболее строгим авторским правом, неотделимым от своего создателя, и не подлежит передаче, купле и продаже ни при каких обстоятельствах. Оно только может быть передано в возмездное или безвозмездное пользование БЕЗ ПРАВА НА ОТЧУЖДЕНИЕ. Главной особенностью научного и творческого авторского права является его обязательная частичная передача в безвозмездное пользование широким слоям заинтересованного населения - на этом сайте все научные книги бесплаты и свободны для скачивания без паролей, кодов и ограничений (я как владелец этого сайта и интернет-хостинг-провайдеры не несем ответственность за деятельность третьих лиц, возможные сбои и технические нарушения интернет-связи при пользовании сайтами по вине третьих лиц). Никаких искусственных препятствий, ограничений скорости, других "негативов" и препятствий мы не устанавливаем.
Государство Украина имеет достаточную базу для обеспечения научных работ и научных исследований по всем законным направлениям научной деятельности. C 2010 г. в Украине любая наука и научные исследования являются объектами строгой государственной монополии и требуют наличия не только документально признанной в Украине профессии, но и высшего государственного образования, официально признанного в Украине.