Книги. Скачать книги DJVU, PDF бесплатно. Бесплатная электронная библиотека
   А.Е. Мудров, Численные методы для ПЭВМ ...

   Вы можете  найти на этой странице (программа отметит желтым цветом)
   Вы можете посмотреть  список книг по высшей математике с сортировкой по алфавиту.
   Вы можете посмотреть  список книг по высшей физике с сортировкой по алфавиту.

   Бесплатно скачать книгу, объем 5.69 Мб, формат .djvu (Томск, 1991)

   Уважаемые дамы и господа !! Для того, чтобы без "глюков" скачать файлы электронных публикаций, нажмите на подчеркнутую ссылку с файлом ПРАВОЙ кнопкой мыши, выберите команду "Save target as ..." ("Сохранить объект как ...") и сохраните файл электронной публикации на локальный компьютер. Электронные публикации обычно представлены в форматах Adobe PDF и DJVU.

   ГЛАВА 1. ТРАНСЦЕНДЕНТНЫЕ УРАВНЕНИЯ
   1.1. Отделение корней
   1.2. Метод дихотомии
   1.3. Метод хорд
   1.4. Метод Ньютона (метод касательных)
   1.5. Метод секущих
   1.6. Метод простых итераций

   ГЛАВА 2. ЗАДАЧИ ЛИНЕЙНОЙ АЛГЕБРЫ
   2.1. Метод Гаусса с выбором главного элемента для решения СЛАУ
   2.2. Итерационные методы решения СЛАУ
   2.3. Вычисление определителей
   2.4. Вычисление элементов обратной матрицы
   2.5. Вычисление собственных значений матриц
   ГЛАВA 3. ИНТЕРПОЛЯЦИЯ ЗАВИСИМОСТЕЙ
   3.1. Интерполяция каноническим полиномом
   3.2. Интерполяционный полином Лагранжа
   3.3. Интерполяционный полином Ньютона
   3.4. .Применение интерполяции для решения уравнений
   3.5. Интерполяционный метод определения собственных значений матрицы
   3.6. Интерполяция сплайнами

   ГЛАВА 4. МЕТОД НАИМЕНЬШИХ КВАДРАТОВ
   4.1. Общий алгоритм
   4.2. Степенной базис
   4.3. Базис в виде классических ортогональных полиномов
   4.4. Базис в виде ортогональных полиномов дискретной переменной функции
   4.5. Линейный вариант МНК
   4.6. Дифференцирование при аппроксимации зависимостей МНК

   ГЛАВА 5. ОПРЕДЕЛЕНИЕ ИНТЕГРАЛА
   5.1. Классификация методов
   5.2. Методы прямоугольников
   5.3. Апостериорные оценки погрешностей по Рунге и Эйткену
   5.4. Метод трапеций
   5.5. Метод Симпсона
   5.6. Вычисление интегралов с заданной точностью
   5.7. Применение сплайнов для численного интегрирования
   5.8. Методы наивысшей алгебраической точности
   5.9. Несобственные интегралы
   5.10. Методы Монте-Карло

   ГЛАВА 6. ЗАДАЧА КОШИ ДЛЯ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ
   6.1. Типы задач для обыкновенных дифференциальных уравнений
   6.2. Метод Эйлера
   6.3. Методы Рунге-Кутта второго порядка
   6.4. Метод Рунге-Кутта четвертого порядка
   6.5. Метод Рунге-Кутта-Мерсона
   6.6. Метод Адамса
   6.7. Метод Гира

   ГЛАВА 7. ГРАНИЧНЫЕ ЗАДАЧИ
   7.1. Метод конечных разностей для линейных граничных задач
   7.2. Метод стрельбы для граничных задач
   7.3. Граничные задачи на собственные значения для обыкновенных дифференциальных уравнений
   7.4. Метод стрельбы для задачи на собственные значения
   7.5. Метод конечных разностей для задачи на собственные значения
   7.6. Граничная задача для дифференциального уравнения в частных производных

   ГЛАВА 8. БЕЗУСЛОВНАЯ ОПТИМИЗАЦИЯ ФУНКЦИЙ
   8.1. Метод золотого сечения
   8.2. Метод координатного спуска
   8.3. Метод градиентного спуска

   ПЕРЕЧЕНЬ ПРОГРАММ
   1.1. Табличный метод отделения корней
   1.2. Метод дихотомии
   1.3. Метод хорд
   1.4. Метод Ньютона
   1.5. Метод Ньютона в комплексной области
   1.6. Метод секущих
   1.7. Метод простых итераций
   2.1. Метод Гаусса для СЛАУ
   2.2. Метод Зейделя для СЛАУ
   2.3. Вычисление определителей по Гауссу
   2.4. Обращение матрицы
   2.5. Прямой метод вычисления собственных значений матрицы
   2.6. Итерационный метод вычисления наибольшего собственного значения
   3.1. Интерполяция каноническим полиномом
   3.2. Полином Лагранжа и его производные
   3.3. Полином Ньютона и его производные
   3.4. Метод парабол
   3.5. Интерполяционный метод вычисления собственных значений матрицы
   3.6. Интерполяция сплайнами
   4.1. МНК со степенным базисом
   4.2. Матрица Грама со степенным базисом
   4.3. МНК с произвольным базисом
   4.4. МНК с ортогональным базисом
   4.5. Линейный вариант МНК
   4.6. Вычисление производных
   5.1. Метод средних прямоугольников
   5.2. Метод трапеций
   5.3. Метод Симпсона
   5.4. Метод Симпсона с оценкой погрешности
   5.5. Сплайн-квадратура
   5.6. Метод Гаусса с двумя узлами
   5.7. Метод Гаусса с шестью узлами
   5.8. Квадратура Эрмита с пятью узлами
   5.9. Метод Монте-Карло
   6.1. Метод Эйлера
   6.2. Метод Рунге-Кутта второго порядка с коррекцией по средней производной
   6.3. Метод Рунге-Кутта второго порядка с коррекцией в средней точке
   6.4. Метод Рунге-Кутта четвертого порядка
   6.5. Метод Рунге-Кутта-Мерсона
   6.6. Метод Адамса
   6.7. Метод Гира
   7.1. Метод конечных разностей для линейной граничной задачи
   7.2. Метод стрельбы для линейной граничной задачи
   7.3. Метод стрельбы для задачи на собственные значения
   7.4. Метод конечных разностей для задачи на собственные значения
   7.5. Задача Дрихле для уравнения Лапласа
   8.1. Метод золотого сечения
   8.2. Метод координатного спуска
   8.3. Метод градиентного спуска

Краткая аннотация книги

   Изложены основные методы и алгоритмы вычислительной математики. Рассмотрены особеннсюти их программной реализации на персональных ЭВМ. Приведены описания и листинги около 150 программ на языках Бейсик, Фортран и Паскаль. Параллельные тексты программ на трех языках будут полезны читателям, владеющим одним из них, для практического освоения двух других. Для научных и инженерно-технических работников различных специальностей; может быть полезна студентам вузов, изучающим программирование.

   Персональные ЭВМ (ПК) широко внедряются в науку и технику, образование, управленческую деятельность, технологические процессы и т.д. Эффективность применения ПЭВМ связана в первую очередь с программным обеспечением, как с наличием готовых пакетов системных и щти здных программ, так и со способностью пользователя адаптировать их к решению конкретных задач.

   Математическое моделирование процессов и явлений в различных областях науки и техники является одним из основных способов получения новых знаний и технологических решений. Для осуществления математического моделирования исследователь независимо от его специальности должен знать определенный минимальный набор алгоритмов вычислительной математики, а также владеть способами их программной реализации на ПЭВМ. Такие знания и навыки необходимы также и при использовании готовых пакетов программ, иначе будут затруднительными планирование вычислительного эксперимента и интерпретация его результатоа

   В настоящее время имеется обширная литература по методам вычислений, программированию на алгоритмических языках. Однако сравнительно небольшое количество изданий объединяет эти два направления.

   Из книг по вычислительной математике универсального содержания, предназначенных для лиц, не являющихся специалистами в этой области, отметим [1], в которой доступность изложения сочетается с достаточной строгостью и практической направленностью излагаемых алгоритмов. Популярность [1] среди научных работников и инженеров проявляется в многочисленных ссылках на нее в научных публикациях, связанных с вычислительным экспериментом при математическом моделировании в различных областях науки и техники. В последние годы издан ряд книг, где представлен широкий спектр методов и алгоритмов [2-7], а также работ, в которых более углубленно даны отдельные разделы вычислительной математики [8-15].

   Среди книг, объединяющих изложение вычислительных алгоритмов с их реализацией на языке Бейсик, отметим [16-17], а на языке Фортран -[18-21]. Подобные работы с программами на языке Паскаль, где были бы представлены систематически методы вычислительной математики, автору не известны.

   При работе на ПЭВМ широко используются языки программирования Бейсик, Фортран и Паскаль, каждый из которых имеет определенные преимущества и недостатки.

   Так, для Бейсика характерны слабая структурированность, сравнительно медленная скорость выполнения программ вычислительных алгоритмов, возможность побочных эффектов за счет "перекрытия" переменных в подпрограммах. Но в то же время программы на Бейсике отличаются читаемостью и обозримостью, краткостью и наличием диалогового режима, удобством непосредственного внесения добавлений и исправлений без использования программ-редакторов и повторной компиляции программы. Такие особенности позволяют использовать Бейсик для реализации сравнительно простых алгоритмов, а также при проверке и отладке отдельных фрагментов сложных алгоритмов и программ.

   Фортран отличается недостаточной структурированностью, наличием множества архаизмов, сохранившихся со времен первых ЭВМ, неконтроли-рованностью объявлений и введением новых переменных по умолчанию. Но в то же время накоплен богатый опыт применения языка и созданы обширные пакеты программ для решения прикладных задач, разработано системное математическое обеспечение и, в частности, оптимизирующие компиляторы для использования Фортрана на разных ЭВМ. Ученых и инженеров Фортран привлекает простотой работы с комплексными переменными и функциями.

   В обучении программированию и практике применения ПЭВМ сейчас широко используется и язык Паскаль благодаря его структурированности, четкой и однозначной грамматике, удобству работы с файловыми структурами. Однако некоторая громоздкость записи программ из-за необходимости описания всех используемых объектов, недостаточная развитость проблемного математического обеспечения, отсутствие оптимизирующих компиляторов на некоторых ПЭВМ являются препятствием при решении задач математического моделирования на языке Паскаль.

   Вследствие указанных особенностей языков программирования на разных этапах решения прикладных задач бывает выгодно использовать разные языки или совмещать их на одном этапе при программировании частей одной задачи. Так как каждый язык обладает своим набором средств для программной реализации алгоритмов, то "дословный" перевод программ с одного языка на другой не всегда возможен. Один и тот же алгоритм должен быть записан на каждом языке программирования с использованием своих изобразительных средств. Здесь возникает ситуация, подобная переводу текста с одного естественного языка на другой.

   В предлагаемой книге классические методы вычислительной математики иллюстрируются параллельными программами на языках Бейсик, Фортран и Паскаль. Всего приводится около 150 законченных программ. Программы составлялись так, чтобы их было легко читать и модернизировать, брать за основу при разработке программных комплексов. Без особых трудностей программы могут быть адаптированы на другие типы ПЭВМ. В программах, где это возможно без ущерба для читаемости и простоты, минимизировано количество используемых переменных и операторов, а тексте каждого раздела приводятся краткое изложение вычислительного метода и задачи, используемой для примера, даются сведения, необходимые для перехода алгоритма метода к программе, рассматривается обобщенная блок-схема программы. Более подробные описания даны к программам на языке Бейсик, где обращается внимание на "подводные камни", объясняется логика использования тех или иных конструкций. В пояснениях к программам на языках Фортран и Паскаль обращается внимание только на отличительные особенности от программ на Бейсике.

   Читатель, владеющий одним из названных языков программирования, с помощью предлагаемой книги сможет практически освоить два других.

   В первой главе рассмотрены методы и алгоритмы отделения и уточнения корней трансцендентных уравнений с параметрами. В качестве примеров используются уравнения, содержащие специальные функции математической физики, среди которых функции Бесселя, эллиптические интегралы, логарифмическая производная у-функции, интегралы Френеля, интеграл вероятности. Подпрограммы вычисления этих функций можно использовать как самостоятельные отдельно от подпрограмм методов решения уравнений. В первой главе показан способ реализации вычислений с комплексными переменными на разных языках программирования.

   Во второй главе рассматриваются точные и итерационные методы решения систем линейных алгебраических уравнений, вычисления определителей, обратных матриц, нахождения собственных значений матриц.

   В третьей главе приводятся алгоритмы и программы интерполяции полиномами и сплайнами. Рассматриваются практические способы численного дифференцирования аппроксимирующих функций, применение интерполяции для решения уравнений и вычисления собственных значений матриц.

   В четвертой главе изложены различные варианты метода наименьших квадратов, используемого для обработки экспериментальных данных, сглаживания и дифференцирования зависимостей, сокращения объемов численной информации. Приведены программы метода со степенным базисом, базисом в виде классических ортогональных полиномов и полиномов дискретной переменной, линейного варианта метода.

   В пятой главе содержится изложение наиболее распространенных способов вычисления определенных интегралов и приведены программы, реализующие интерполяционные методы, методы наивысшей алгебраической точности и статистических испытаний.

   В шестой главе рассмотрены алгоритмы решения задачи Коши для системы обыкновенных дифференциальных уравнений. Приведены программы методов Рунге-Кутта разных порядков, среди которых имеется вариант метода с автоматическим выбором шага интегрирования. Из многоточечных методов выбраны методы Адамса и Гира типа прогноз-коррекция.

   Седьмая глава посвящена методам решения граничных задач для обыкновенных дифференциальных уравнений и уравнений в частных производных. Предлагаются программы методов стрельбы и конечных разностей для граничных задач и задач на собственные значения. В качестве примера задач последнего класса рассмотрена задача о распространении электромагнитных волн в коаксиальной волноведущей структуре.

   В восьмой главе разработаны программы элементарных методов безусловной минимизации функции одной и многих переменных.

   Предлагаемая книга предназначена для научных и инженерно-технических работников, не являющихся специалистами в области программирования и вычислительной математики, желающих ставить и решать прикладные задачи с помощью ПЭВМ. Автор не претендует на полноту охвата и глубину изложения выбранных методов, рассмотренный материал следует считать введением в необъятный мир вычислительной математики.

 

 



 

   Книги, книги скачать, скачать книгу, книги онлайн, читать онлайн, скачать книги бесплатно, читать книги, читать книги онлайн, читать, библиотека онлайн, книги читать, читать онлайн бесплатно, читать книги бесплатно, электронная книга, читать онлайн книги, лучшие книги математика и физика, интересные книги математика и физика, электронные книги, книги бесплатно, книги бесплатно скачать, скачать бесплатно книги математика и физика, скачать книги бесплатно полностью, онлайн библиотека, книги скачать бесплатно, читать книги онлайн бесплатно без регистрации математика и физика, читать книги онлайн бесплатно математика и физика, электронная библиотека математика и физика, книги читать онлайн математика и физика, мир книг математика и физика, читать бесплатно математика и физика, библиотека онлайн математика и физика, чтение книг математика и физика, книги онлайн бесплатно математика и физика, популярные книги математика и физика, библиотека бесплатных книг математика и физика, скачать электронную книгу математика и физика, бесплатная библиотека онлайн математика и физика, электронные книги скачать, учебники онлайн математика и физика, библиотека электронных книг математика и физика, электронные книги скачать бесплатно без регистрации математика и физика, хорошие книги математика и физика, скачать книги полностью математика и физика, электронная библиотека читать бесплатно математика и физика, электронная библиотека скачать бесплатно математика и физика, сайты для скачивания книг математика и физика, умные книги математика и физика, поиск книг математика и физика, скачать электронные книги бесплатно математика и физика, электронная книга скачать математика и физика, самые лучшие книги математика и физика, электронная библиотека бесплатно математика и физика, читать онлайн бесплатно книги математика и физика, сайт книг математика и физика, библиотека электронная, онлайн книги читать, книга электронная математика и физика, сайт для скачивания книг бесплатно и без регистрации, бесплатная онлайн библиотека математика и физика, где бесплатно скачать книги математика и физика, читать книги бесплатно и без регистрации математика и физика, учебники скачать математика и физика, скачать бесплатно электронные книги математика и физика, скачать бесплатно книги полностью, библиотека онлайн бесплатно, лучшие электронные книги математика и физика, онлайн библиотека книг математика и физика, скачать электронные книги бесплатно без регистрации, библиотека онлайн скачать бесплатно, где скачать бесплатно книги, электронные библиотеки бесплатные, электронные книги бесплатно, бесплатные электронные библиотеки, онлайн библиотека бесплатно, бесплатно читать книги, книги онлайн бесплатно читать, читать бесплатно онлайн, интересные книги читать онлайн математика и физика, чтение книг онлайн математика и физика, электронная библиотека онлайн математика и физика, бесплатная библиотека электронных книг математика и физика, библиотека онлайн читать, читать бесплатно и без регистрации математика и физика, найти книгу математика и физика, каталог книг математика и физика, скачать книги онлайн бесплатно математика и физика, интернет библиотека математика и физика, скачать бесплатно книги без регистрации математика и физика, где можно скачать книги бесплатно математика и физика, где можно скачать книги, сайты для бесплатного скачивания книг, онлайн читать, библиотека читать, книги читать онлайн бесплатно без регистрации, книги библиотека, бесплатная библиотека онлайн, онлайн библиотека читать бесплатно, книги читать бесплатно и без регистрации, электронная библиотека скачать книги бесплатно, онлайн читать бесплатно.

 

   http://mat.net.ua/wap, http://mat.net.ua/mobi, http://mat.net.ua/m
   С 2017 года возобновляем мобильную версию веб-сайта для мобильных телефонов (сокращенный текстовый дизайн, технология WAP) - верхняя кнопка Мобильная версия в левом верхнем углу веб-страницы. Если у Вас нет доступа в Интернет через персональный компьютер или интернет-терминал, Вы можете воспользоваться Вашим мобильным телефоном для посещения нашего веб-сайта (сокращенный дизайн) и при необходимости сохранить данные с веб-сайта в память Вашего мобильного телефона. Сохраняйте книги и статьи на Ваш мобильный телефон (мобильный интернет) и скачивайте их с Вашего телефона на компьютер. Удобное скачивание книг через мобильный телефон (в память телефона) и на Ваш компьютер через мобильный интерфейс. Быстрый Интернет без излишних тэгов, бесплатно (по цене услуг Интернет) и без паролей. Материал приведен для ознакомления. Прямые ссылки на файлы книг и статей на веб-сайте и их продажи третьими лицами запрещены.

 

Наши ссылки на веб-страницы, можно скопировать html-код ссылки


Книги по математике и физике, программы HTML, компьютерные технологии

Скачать книги - математика, бесплатно книги по высшей математике и физике по Интернет

   Примечание. Удобная текстовая ссылка для форумов, блогов, цитирования материалов веб-сайта, код html можно скопировать и просто вставить в Ваши веб-страницы при цитировании материалов нашего веб-сайта. Материал приведен для ознакомления. Сохраняйте также книги на Ваш мобильный телефон через сеть Интернет (есть мобильная версия сайта - ссылка вверху слева страницы) и скачивайте их с Вашего телефона на компьютер. Прямые ссылки на файлы книг запрещены.

 

   Вы можете использовать скачанные с веб-сайта книги и другие материалы только для личного ознакомления. Авторское право авторов книг и любых электронных приложений к ним (в том числе фото, видео, рукописи, архивы и прочее) не подлежит патентованию и подобным "искусственным" дополнительным мерам защиты авторского права - не патентуют рукописи, фотографии, видеоматериалы, формулы, графики, сводные таблицы, тексты монографий, черновики и оригинальные издания вне зависимости от того, находятся ли они в частных или государственных архивах любой страны. Вне зависимости от того, есть ли у книги или рукописи и автора какие-либо коды или нет, подписаны они или нет, известен автор или нет, является он(а) гражданином Украины или иностранцем - запрещено явным образом присваивать чужое авторское право и ставить чужие ФИО в чужих работах и трудах (в случае неуказанного, неустановленного или сомнительного авторства наиболее предпочтительно использовать анонимность - это корректно, этично и непротивозаконно, так как в этом случае истинные владельцы будут поданы в розыск и объективно установленны в своих правах независимой комиссией).

   Сегодня электронный вариант публикации приравнен к печатной бумажной форме распространения информации (требования аналогичны). Наиболее предпочтительными являются международные форматы публикаций PDF и DJVU (они лучше всего защищены от сторонних модификаций - изменения в них могут внести только профессионалы), допускаются и другие общепринятые и широко распространенные форматы электронного представления авторской или смежной информации. Помните, что один человек сам по себе ничего не делает и не решает - у любого автора любого издания есть коллеги, единомышленники, соратники, кураторы, преподаватели, наставники, идейные, политические и научные руководители и вдохновители, предшественники и приемники, завистники и плагиаторы, желающие незаконно "упасть на хвост и поехать", "присоседиться к работе" и "присоединиться". Чем серьезнее ученый и чем более масштабные объективные и фундаментальные работы он(а) реально ведет, тем большее количество мошенников и аферистов желает незаконно "находиться" и "быть рядом" с таким человеком, его деньгами, премиями, подарками и другими объективными поощрениями. Поэтому все подобные аферисты и мошенники, как и их голословные заявления, подлежат строгой проверке на практике как гласными, так и негласными методами государственного, общественного и политического независимого контроля (в том числе судебного и силового).

   Вам разрешается использовать электронные публикации и иные материалы только для личного ознакомления. Никаких дополнительных прав и свобод (в том числе авторских и коммерческих прав, в том числе права на коммерческое распространение) получение и обладание электронной и иной публикации и материалов Вам не предоставляет. Вам не дает никаких прав, в т.ч. авторских и смежных прав, личное знакомство с автором и правообладателем, совместное проживание, учеба или работа, семейный и иной статус, совместное хобби и увлечения, посещение одних и тех же мероприятий, встречи, конфликты и даже отсутствие таковых. Вы не имеете право продавать электронные публикации и иные авторские материалы, отчуждать их от владельца и извлекать материальную выгоду от владения электронной и иной формой представления авторской информации. Отчуждение авторского научного и творческого права запрещено вне зависимости от срока давности издания, способа и места его хранения, разрекламированности, известности или неизвестности и даже анонимности автора и соавтора, гражданства, здоровья, болезни и любого другого объективного статуса реального правообладателя. Запрещены фото- и видеомонтажи, врезки и изъятия, компиляция из сторонних источников и другие формы заведомого мошенничества. Запрещено иностранцам без признанной в Украине и документально подтвержденной профессии, без легитимных виз и специальных персонифицированных межгосударственных соглашений занимать рабочие места граждан Украины на территории Украины и во всех предприятиях, которые являются собственностью Украины и ее граждан вне зависимости от места регистарции и дислокации этих предприятий. Запрещено работать без рабочих виз на территории Украины гражданам и подданым стран, с которыми у Украины установлен визовый режим.

   Авторское право (особенно научное и творческое) никогда не патентуется, не отчуждается ни при каких обстоятельствах, не продается и не покупается и является неотъемлимым от его создателя при любых обстоятельствах - патентуются только уникальные инженерные и программные разработки, авторские алгоритмы, изобретения и подобные материалы, содержащие более 60% объективно признанных независимой государственной экспертной комиссией авторских инноваций. Незаконным является присвоение себе чужих архивов, черновиков, заметок, аудио, фото и видеоматериалов (даже если вы не знаете их автора или же непосредственно знакомы с создателем и правообладателем, это ничего не решает). Научное и творческое авторское право не отчуждается от автора и создателя и никогда не делегируется третьим лицам (особенно без профессии и неконтрафактных документов) - оно является наиболее строгим авторским правом, неотделимым от своего создателя, и не подлежит передаче, купле и продаже ни при каких обстоятельствах. Оно только может быть передано в возмездное или безвозмездное пользование БЕЗ ПРАВА НА ОТЧУЖДЕНИЕ. Главной особенностью научного и творческого авторского права является его обязательная частичная передача в безвозмездное пользование широким слоям заинтересованного населения - на этом сайте все научные книги бесплаты и свободны для скачивания без паролей, кодов и ограничений (я как владелец этого сайта и интернет-хостинг-провайдеры не несем ответственность за деятельность третьих лиц, возможные сбои и технические нарушения интернет-связи при пользовании сайтами по вине третьих лиц). Никаких искусственных препятствий, ограничений скорости, других "негативов" и препятствий мы не устанавливаем.

   Государство Украина имеет достаточную базу для обеспечения научных работ и научных исследований по всем законным направлениям научной деятельности. C 2010 г. в Украине любая наука и научные исследования являются объектами строгой государственной монополии и требуют наличия не только документально признанной в Украине профессии, но и высшего государственного образования, официально признанного в Украине.