Книги. Скачать книги DJVU, PDF бесплатно. Бесплатная электронная библиотека
   А.И. Мальцев, Основы линейной алгебры

   Вы можете  найти на этой странице (программа отметит желтым цветом)
   Вы можете посмотреть  список книг по высшей математике с сортировкой по алфавиту.
   Вы можете посмотреть  список книг по высшей физике с сортировкой по алфавиту.

   Бесплатно скачать книгу, объем 4.19 Мб, формат .djvu
   3 издание, Новосибирск, 1969

   Уважаемые дамы и господа !! Для того, чтобы без "глюков" скачать файлы электронных публикаций, нажмите на подчеркнутую ссылку с файлом ПРАВОЙ кнопкой мыши, выберите команду "Save target as ..." ("Сохранить объект как ...") и сохраните файл электронной публикации на локальный компьютер. Электронные публикации обычно представлены в форматах Adobe PDF и DJVU.

Глава I. Матрицы и определители
   § 1. Действия с матрицами
   1.1. Матрицы. Основное поле (10). 1.2. Умножение матриц (12). 1.3. Транспонирование матриц (17). 1.4. Клеточные матрицы (21). 1.5. Кватернионы (24).
   § 2. Определители
   2.1. Определение (30). 2.2. Основные свойства определителей (36). 2.3. Определитель произведения. Обратные матрицы (45). 2.4. Крамеровские системы линейных уравнений (50).
   § 3. Характеристический и минимальный многочлены
   3.1. Подобие матриц (55). 3.2. Характеристический многочлен (57). 3.3. Минимальный многочлен (60).

Глава П. Линейные пространства
   § 4. Размерность
   4.1 Модули и векторные пространства (65). 4.2. Линейная зависимость (70). 4.3. Изоморфизм (78).
   § 5. Координаты
   5.1. Координаты вектора (81). 5.2. Ранги матриц (85). 5.3. Общие системы линейных уравнений (92).
   § 6. Линейные подпространства
   6.1. Пересечение и сумма подпространств (98). 6.2. Прямые суммы (103). 6.3. Системы однородных линейных уравнений (105).

Глава Ш. Линейные преобразования
   § 7. Преобразования произвольных множеств
   7.1. Произведение преобразований (ПО). 7.2. Единичное и обратное преобразования (112). 7.3. Взаимно однозначные преобразования (113). 7.4. Подстановки (114).
   § 8. Линейные преобразования и их матрицы
   8.1. Простейшие свойства (117). 8.2. Матрица линейного преобразования (120). 8.3. Преобразование координат (121).
   § 9. Действия с линейными преобразованиями
   9.1. Умножение линейных преобразований (123). 9.2. Умножение на число и сложение (125). 9.3. Многочлены от линейных преобразований (127).
   § 10. Ранг и дефект линейного преобразования
   10.1. Ядро и область значений (129). 10.2. Особенные и неособенные преобразования (131). 10.3. Ранг матрицы преобразования (133).
   § 11. Инвариантные подпространства
   11.1. Индуцированное преобразование (135). 11.2. Прямая сумма инвариантных подпространств (137). 11.3. Характеристический многочлен преобразования (139). 11.4. Собственные векторы и собственные значения (140).
   § 12. Преобразования с матрицей нормальной формы
   12.1. Диагональная форма (144). 12.2. Клетки Жордана (145). 12.3. Корневые подпространства (146).

Глава IV. Многочленные матрицы
   § 13. Инвариантные множители
   13.1. Эквивалентность (150). 13.2. Диагональная форма (152). 13.3. Наибольшие общие делители миноров (155). 13.4. Условия эквивалентности (159).
   § 14. Элементарные делители
   14.1. Связь с инвариантными множителями (163). 14.2. Элементарные делители распавшейся матрицы (165).
   § 15. Нормальные формы матрицы линейного преобразования
   15.1. Деление А,-матриц (167). 15.2. Скалярная эквивалентность (169). 15.3. Критерий подобия матриц (170). 15.4. Нормальная форма Жордана (171). 15.5. Естественная нормальная форма (174). 15.6. Другие нормальные формы (176).
   § 16. Функции от матриц
   16.1. Многочлен от жордановой матрицы (181). 16.2. Скалярные функции (182). 16.3. Представление значений функций многочленами (185). 16.4. Элементарные делители функций (187). 16.5. Степенные ряды (190). 16.6. Матрицы, перестановочные с данной матрицей (191). 16.7. Матрицы, перестановочные с перестановочными матрицами (195).

Глава V. Унитарные и евклидовы пространства 9
   § 17. Унитарные пространства 9
   17.1. Аксиоматика и примеры (199). 17.2. Длина вектора (203). 17.3. Ортонормированные системы (205). 17.4. Изоморфизм (210). 17.5. Ортогональные суммы. Проекции (211).
   § 18. Сопряженные преобразования
   18.1. Линейные функции (214). 18.2. Сопряженные преобразования (217). 18.3. Нормальные преобразования (219).
   § 19. Унитарные и симметрические преобразования
   19.1. Унитарные преобразования (225). 19.2. Унитарная эквивалентность (227). 19.3. Нормальная форма матрицы унитарного преобразования (229). 19.4. Симметрические преобразования (231). 19.5.Кососимметрические преобразования(233).
   19.6.Неотрицательные симметрические преобразования (235).
   § 20. Разложения общих преобразований
   20.1. Разложение на симметрическую и кососимметрическую части (240). 20.2. Полярное разложение (241). 20.3. Преобразование Кэли (245). 20.4. Спектральное разложение (248).

Глава VI. Квадратичные и билинейные формы
   § 21. Билинейные формы
   21.1. Преобразование форм (254). 21.2. Эквивалентность билинейных форм (251).21.3.Конгруэнтность симметрических билинейных форм (259).
   § 22. Квадратичные формы
   22.1. Конгруэнтность (262). 22.2. Алгоритм Лагранжа (264). 22.3. Закон инерции квадратичных форм (267). 22.4. Знакопостоянные формы (269).
   § 23. Пары форм
   23.1. Эквивалентность пар форм (271). 23.2. Конгруэнтность пар форм (272). 23.3. Конгруэнтность несимметрических билинейных форм (276). Примеры и задачи ч
   § 24. Билинейные функции
   24.1. Основные определения (278). 24.2. Пространства с билинейной метрикой (282). 24.3. Билинейные функции в билинейно- метрических пространствах (286).

Глава VII. Линейные преобразования билинейно-метрических пространств
   § 25. Основные типы линейных преобразований
   25.1. Автоморфизмы (293). 25.2. Симметрические и кососимметрические преобразования (298).
   § 26. Комплексные евклидовы пространства
   26.1. Симметрические преобразования (301). 26.2. Кососимметрические преобразования (303). 26.3. Комплексные ортогональные преобразования (306).
   § 27. Симплектические пространства
   27.1. Симметрические преобразования (309). 27.2. Кососимметрические преобразования (312). 27.3. Симплектические преобразования (313).
   § 28. Псевдоунитарные пространства
   28.1. Симметрические преобразования (316). 28.2. Псевдоунитарные преобразования (324). Примеры и задачи 5

Глава VIII. Аффинные пространства
   § 29. Общие аффинные пространства
   29.1. Аксиоматика (326). 29.2. Линейные многообразия (334). 29.3. Параллельные плоскости (344). 29.4. Линейные функционалы (346).
   § 30. Аффинные координаты
   30.1. Координаты точки (353). 30.2. Уравнения плоскостей (356). 30.3. Уравнения гиперплоскостей и прямых (364). 30.4. Преобразование аффинных координат (369).
   § 31. Выпуклые тела
   31.1. Лучи (374). 31.2. Полупространства (377). 31.3. Выпуклые множества (381).
   § 32. Евклидовы точечные пространства
   32.1. Длина ломаной (386). 32.2. Угол между прямыми (388). 32.3. Ортогональные проекции (391). 32.4. Угол между плоскостью и прямой (397).

Краткая аннотация книги

   Анатолий Иванович Мальцев собирался существенно переработать "Основы линейной алгебры" для третьего издания, выбросив часть старого текста и сделав значительные добавления из геометрии. "В результате, - писал он в издательство, - возникает более чем наполовину новая книга. Надеюсь, что она будет полезна более подготовленным современным студентам университетов и пединститутов, в особенности тех университетов, где курсы линейной алгебры и аналитической геометрии читаются совместно. Я даже подумывал, не изменить ли название на "Основы линейной алгебры и аналитической геометрии". Смерть помешала Анатолию Ивановичу осуществить его планы, он успел написать только первые три главы (третью не полностью). В настоящем издании главы I, II, включающие теперь теорию определителей и систем линейных уравнений, печатаются по рукописи Анатолия Ивановича, а главы III-VII почти без изменений воспроизводят соответствующий текст второго издания. Заключительную главу второго издания - о тензорах - Анатолий Иванович собирался подвергнуть коренной переработке, но не успел даже приступить к ней; в настоящем издании эта глава опущена. Вместо нее здесь приводится новая глава VII]-об аффинных пространствах, - которая печатается по неоконченно:1! рукописи главы III. Ссылки на некоторые определения и результаты общей теории алгебраических систем даются по книге А. И. Мальцева "Алгебраические системы", вышедшей в 1969 г. в издательстве "Наука". Мы старались по возможности сохранить оригинальное изложение Анатолия Ивановича и ограничились самыми необходимыми изменениями и исправлениями отдельных неточностей.

   Линейная алгебра - ветвь математики столь же старая, как и сама математика. Первоначальной задачей линейной алгебры можно считать задачу решения линейного уравнения ах-\-Ь - 0. Хотя эта задача и не представляет каких-либо трудностей, прием, при помощи которого она решается, а также свойства соответствующей линейной функции у = ах-\-Ь являются исходными образцами для идей и методов всей линейной алгебры. Например, учение о решении систем уравнений со многими неизвестными имеет в своей основе идею замены системы цепочкой указанных уравнений простейшего вида.

   Важность систем линейных уравнений особенно возросла после создания аналитической геометрии, позволившей свести к исследованию систем линейных уравнений все основные вопросы о расположении плоскостей и прямых в пространстве. Поиски общих формул решения системы п уравнений с п неизвестными уже в XVIII в. привели Лейбница и Крамера к понятию определителя. В XIX в., помимо алгебры и аналитической геометрии, определители проникают и в анализ в работах Остроградского, Якоби (функциональные определители), Вронского и др. Параллельно с этим в аналитической геометрии, теории чисел и особенно в теоретической механике все большую важность приобретала задача преобразования квадратичных форм линейными подстановками переменных. Эта же задача явилась одной из центральных и в разработке геометрических идей Лобачевского и Римана, приведшей к созданию учения о линейных многомерных пространствах (Грассман). В середине прошлого века в связи с исследованиями некоммутативных алгебр (Гамильтон) в работах Кэли и Сильвестра возникает матричное исчисление, занявшее в дальнейшем развитии линейной алгебры одно из главных мест. К концу XIX в. оказались созданными важнейшие разделы матричного исчисления: о нормальной форме матрицы линейного преобразования (Жордан), элементарных делителях (Вейерштрасс), парах квадратичных форм (Вейерштрасс, Кронекер), эрмитовых формах (Эрмит). Развитие дифференциальной геометрии многомерных пространств и теории преобразований алгебраических форм высших степеней приводит в конце XIX в. к созданию тензорного исчисления.

   В текущем столетии, методы линейной алгебры нашли обширные применения и были развиты дальше в теории колец и модулей, в теории представлений групп, а также в теории топологических векторных пространств и других разделах функционального анализа. Уже в последние два десятилетия теория линейных неравенств и неразрывно связанная с ней теория аффинных многомерных пространств заняли одно из центральных мест в такой популярной области прикладной математики, как теория операций. Благодаря этому элементы теории многомерных аффинных пространств стали теперь обязательной частью математического образования инженеров и экономистов.

   В линейной алгебре изучаются объекты трех родов: матрицы, пространства и алгебраические формы. Теории этих объектов тесно связаны друг с другом. Большинство задач линейной алгебры допускает естественную формулировку в каждой из указанных трех теорий. Матричная формулировка обычно наиболее удобна для вычислений. С другой стороны, в геометрии и механике большинство задач линейной алгебры возникает в виде задач об исследовании алгебраических форм. Тем не менее наиболее отчетливое понимание внутренних связей между различными задачами линейной алгебры достигается лишь при рассмотрении соответствующих линейных пространств, которые и являются поэтому главным объектом изучения линейной алгебры.

   С точки зрения теории форм содержание линейной алгебры естественно распадается на теорию линейных, теорию квадратичных и теорию форм высших степеней. К собственно линейной алгебре обычно относят лишь теорию линейных и квадратичных форм, а также начала теории полилинейных форм и тензорной алгебры.

 

 



 

   Книги, книги скачать, скачать книгу, книги онлайн, читать онлайн, скачать книги бесплатно, читать книги, читать книги онлайн, читать, библиотека онлайн, книги читать, читать онлайн бесплатно, читать книги бесплатно, электронная книга, читать онлайн книги, лучшие книги математика и физика, интересные книги математика и физика, электронные книги, книги бесплатно, книги бесплатно скачать, скачать бесплатно книги математика и физика, скачать книги бесплатно полностью, онлайн библиотека, книги скачать бесплатно, читать книги онлайн бесплатно без регистрации математика и физика, читать книги онлайн бесплатно математика и физика, электронная библиотека математика и физика, книги читать онлайн математика и физика, мир книг математика и физика, читать бесплатно математика и физика, библиотека онлайн математика и физика, чтение книг математика и физика, книги онлайн бесплатно математика и физика, популярные книги математика и физика, библиотека бесплатных книг математика и физика, скачать электронную книгу математика и физика, бесплатная библиотека онлайн математика и физика, электронные книги скачать, учебники онлайн математика и физика, библиотека электронных книг математика и физика, электронные книги скачать бесплатно без регистрации математика и физика, хорошие книги математика и физика, скачать книги полностью математика и физика, электронная библиотека читать бесплатно математика и физика, электронная библиотека скачать бесплатно математика и физика, сайты для скачивания книг математика и физика, умные книги математика и физика, поиск книг математика и физика, скачать электронные книги бесплатно математика и физика, электронная книга скачать математика и физика, самые лучшие книги математика и физика, электронная библиотека бесплатно математика и физика, читать онлайн бесплатно книги математика и физика, сайт книг математика и физика, библиотека электронная, онлайн книги читать, книга электронная математика и физика, сайт для скачивания книг бесплатно и без регистрации, бесплатная онлайн библиотека математика и физика, где бесплатно скачать книги математика и физика, читать книги бесплатно и без регистрации математика и физика, учебники скачать математика и физика, скачать бесплатно электронные книги математика и физика, скачать бесплатно книги полностью, библиотека онлайн бесплатно, лучшие электронные книги математика и физика, онлайн библиотека книг математика и физика, скачать электронные книги бесплатно без регистрации, библиотека онлайн скачать бесплатно, где скачать бесплатно книги, электронные библиотеки бесплатные, электронные книги бесплатно, бесплатные электронные библиотеки, онлайн библиотека бесплатно, бесплатно читать книги, книги онлайн бесплатно читать, читать бесплатно онлайн, интересные книги читать онлайн математика и физика, чтение книг онлайн математика и физика, электронная библиотека онлайн математика и физика, бесплатная библиотека электронных книг математика и физика, библиотека онлайн читать, читать бесплатно и без регистрации математика и физика, найти книгу математика и физика, каталог книг математика и физика, скачать книги онлайн бесплатно математика и физика, интернет библиотека математика и физика, скачать бесплатно книги без регистрации математика и физика, где можно скачать книги бесплатно математика и физика, где можно скачать книги, сайты для бесплатного скачивания книг, онлайн читать, библиотека читать, книги читать онлайн бесплатно без регистрации, книги библиотека, бесплатная библиотека онлайн, онлайн библиотека читать бесплатно, книги читать бесплатно и без регистрации, электронная библиотека скачать книги бесплатно, онлайн читать бесплатно.

 

   http://mat.net.ua/wap, http://mat.net.ua/mobi, http://mat.net.ua/m
   С 2017 года возобновляем мобильную версию веб-сайта для мобильных телефонов (сокращенный текстовый дизайн, технология WAP) - верхняя кнопка Мобильная версия в левом верхнем углу веб-страницы. Если у Вас нет доступа в Интернет через персональный компьютер или интернет-терминал, Вы можете воспользоваться Вашим мобильным телефоном для посещения нашего веб-сайта (сокращенный дизайн) и при необходимости сохранить данные с веб-сайта в память Вашего мобильного телефона. Сохраняйте книги и статьи на Ваш мобильный телефон (мобильный интернет) и скачивайте их с Вашего телефона на компьютер. Удобное скачивание книг через мобильный телефон (в память телефона) и на Ваш компьютер через мобильный интерфейс. Быстрый Интернет без излишних тэгов, бесплатно (по цене услуг Интернет) и без паролей. Материал приведен для ознакомления. Прямые ссылки на файлы книг и статей на веб-сайте и их продажи третьими лицами запрещены.

 

Наши ссылки на веб-страницы, можно скопировать html-код ссылки


Книги по математике и физике, программы HTML, компьютерные технологии

Скачать книги - математика, бесплатно книги по высшей математике и физике по Интернет

   Примечание. Удобная текстовая ссылка для форумов, блогов, цитирования материалов веб-сайта, код html можно скопировать и просто вставить в Ваши веб-страницы при цитировании материалов нашего веб-сайта. Материал приведен для ознакомления. Сохраняйте также книги на Ваш мобильный телефон через сеть Интернет (есть мобильная версия сайта - ссылка вверху слева страницы) и скачивайте их с Вашего телефона на компьютер. Прямые ссылки на файлы книг запрещены.

 

   Вы можете использовать скачанные с веб-сайта книги и другие материалы только для личного ознакомления. Авторское право авторов книг и любых электронных приложений к ним (в том числе фото, видео, рукописи, архивы и прочее) не подлежит патентованию и подобным "искусственным" дополнительным мерам защиты авторского права - не патентуют рукописи, фотографии, видеоматериалы, формулы, графики, сводные таблицы, тексты монографий, черновики и оригинальные издания вне зависимости от того, находятся ли они в частных или государственных архивах любой страны. Вне зависимости от того, есть ли у книги или рукописи и автора какие-либо коды или нет, подписаны они или нет, известен автор или нет, является он(а) гражданином Украины или иностранцем - запрещено явным образом присваивать чужое авторское право и ставить чужие ФИО в чужих работах и трудах (в случае неуказанного, неустановленного или сомнительного авторства наиболее предпочтительно использовать анонимность - это корректно, этично и непротивозаконно, так как в этом случае истинные владельцы будут поданы в розыск и объективно установленны в своих правах независимой комиссией).

   Сегодня электронный вариант публикации приравнен к печатной бумажной форме распространения информации (требования аналогичны). Наиболее предпочтительными являются международные форматы публикаций PDF и DJVU (они лучше всего защищены от сторонних модификаций - изменения в них могут внести только профессионалы), допускаются и другие общепринятые и широко распространенные форматы электронного представления авторской или смежной информации. Помните, что один человек сам по себе ничего не делает и не решает - у любого автора любого издания есть коллеги, единомышленники, соратники, кураторы, преподаватели, наставники, идейные, политические и научные руководители и вдохновители, предшественники и приемники, завистники и плагиаторы, желающие незаконно "упасть на хвост и поехать", "присоседиться к работе" и "присоединиться". Чем серьезнее ученый и чем более масштабные объективные и фундаментальные работы он(а) реально ведет, тем большее количество мошенников и аферистов желает незаконно "находиться" и "быть рядом" с таким человеком, его деньгами, премиями, подарками и другими объективными поощрениями. Поэтому все подобные аферисты и мошенники, как и их голословные заявления, подлежат строгой проверке на практике как гласными, так и негласными методами государственного, общественного и политического независимого контроля (в том числе судебного и силового).

   Вам разрешается использовать электронные публикации и иные материалы только для личного ознакомления. Никаких дополнительных прав и свобод (в том числе авторских и коммерческих прав, в том числе права на коммерческое распространение) получение и обладание электронной и иной публикации и материалов Вам не предоставляет. Вам не дает никаких прав, в т.ч. авторских и смежных прав, личное знакомство с автором и правообладателем, совместное проживание, учеба или работа, семейный и иной статус, совместное хобби и увлечения, посещение одних и тех же мероприятий, встречи, конфликты и даже отсутствие таковых. Вы не имеете право продавать электронные публикации и иные авторские материалы, отчуждать их от владельца и извлекать материальную выгоду от владения электронной и иной формой представления авторской информации. Отчуждение авторского научного и творческого права запрещено вне зависимости от срока давности издания, способа и места его хранения, разрекламированности, известности или неизвестности и даже анонимности автора и соавтора, гражданства, здоровья, болезни и любого другого объективного статуса реального правообладателя. Запрещены фото- и видеомонтажи, врезки и изъятия, компиляция из сторонних источников и другие формы заведомого мошенничества. Запрещено иностранцам без признанной в Украине и документально подтвержденной профессии, без легитимных виз и специальных персонифицированных межгосударственных соглашений занимать рабочие места граждан Украины на территории Украины и во всех предприятиях, которые являются собственностью Украины и ее граждан вне зависимости от места регистарции и дислокации этих предприятий. Запрещено работать без рабочих виз на территории Украины гражданам и подданым стран, с которыми у Украины установлен визовый режим.

   Авторское право (особенно научное и творческое) никогда не патентуется, не отчуждается ни при каких обстоятельствах, не продается и не покупается и является неотъемлимым от его создателя при любых обстоятельствах - патентуются только уникальные инженерные и программные разработки, авторские алгоритмы, изобретения и подобные материалы, содержащие более 60% объективно признанных независимой государственной экспертной комиссией авторских инноваций. Незаконным является присвоение себе чужих архивов, черновиков, заметок, аудио, фото и видеоматериалов (даже если вы не знаете их автора или же непосредственно знакомы с создателем и правообладателем, это ничего не решает). Научное и творческое авторское право не отчуждается от автора и создателя и никогда не делегируется третьим лицам (особенно без профессии и неконтрафактных документов) - оно является наиболее строгим авторским правом, неотделимым от своего создателя, и не подлежит передаче, купле и продаже ни при каких обстоятельствах. Оно только может быть передано в возмездное или безвозмездное пользование БЕЗ ПРАВА НА ОТЧУЖДЕНИЕ. Главной особенностью научного и творческого авторского права является его обязательная частичная передача в безвозмездное пользование широким слоям заинтересованного населения - на этом сайте все научные книги бесплаты и свободны для скачивания без паролей, кодов и ограничений (я как владелец этого сайта и интернет-хостинг-провайдеры не несем ответственность за деятельность третьих лиц, возможные сбои и технические нарушения интернет-связи при пользовании сайтами по вине третьих лиц). Никаких искусственных препятствий, ограничений скорости, других "негативов" и препятствий мы не устанавливаем.

   Государство Украина имеет достаточную базу для обеспечения научных работ и научных исследований по всем законным направлениям научной деятельности. C 2010 г. в Украине любая наука и научные исследования являются объектами строгой государственной монополии и требуют наличия не только документально признанной в Украине профессии, но и высшего государственного образования, официально признанного в Украине.