ISBN 966-7343-29-5 К.305

УДК 531.0
ББК 22.311
  К.305

Загрузка...

Бесплатная электронная библиотека. Скачать книги DJVU, PDF бесплатно
К. Айерленд, М. Роузен, Классическое введение в современную теорию чисел

   Вы можете  найти на этой странице (программа отметит желтым цветом)
   Вы можете посмотреть  список книг по высшей математике с сортировкой по алфавиту.
   Вы можете посмотреть  список книг по высшей физике с сортировкой по алфавиту.

   Бесплатно скачать книгу, объем 3.19 Мб, формат .djvu (Москва, 1987)

   Уважаемые дамы и господа !! Для того, чтобы без "глюков" скачать файлы электронных публикаций, нажмите на подчеркнутую ссылку с файлом ПРАВОЙ кнопкой мыши, выберите команду "Save target as ..." ("Сохранить объект как ...") и сохраните файл электронной публикации на локальный компьютер. Электронные публикации обычно представлены в форматах Adobe PDF и DJVU.

   Глава 1. Однозначное разложение на множители
   § 1. Однозначное разложение на множители в Z
   § 2. Однозначное разложение на множители в к[х]
   § 3. Однозначное разложение на множители в областях главных идеалов
   § 4. Кольца

   Глава 2. Применения однозначного разложения на множители
   § 1. В Z бесконечно много простых чисел
   § 2. Некоторые арифметические функции
   § 3. Ряд расходится
   § 4. Рост функции

   Глава 3. Сравнения
   § 1. Элементарные наблюдения
   § 2. Сравнения в
   § 3. Сравнение
   § 4. Китайская теорема об остатках

   Глава 4. Структура группы
   § 1. Примитивные корни и структура группы
   § 2. n-степенные вычеты

   Глава 5. Квадратичный закон взаимности
   § 1. Квадратичные вычеты
   § 2. Квадратичный закон взаимности
   § 3. Доказательство квадратичного закона взаимности

   Глава 6. Квадратичные суммы Гаусса
   § 1. Алгебраические числа и целые алгебраические числа
   § 2. Квадратичный характер числа 2
   § 3. Квадратичные суммы Гаусса
   § 4. Знак квадратичной суммы Гаусса

   Глава 7. Конечные поля
   § 1. Основные свойства конечных полей
   § 2. Существование конечных полей
   § 3. Приложение к квадратичным вычетам

   Глава 8. Суммы Гаусса и Якоби
   § 1. Мультипликативные характеры
   § 2. Суммы Гаусса
   § 3. Суммы Якоби
   § 4. Уравнение
   § 5. Дальнейшие результаты о суммах Якоби
   § 6. Применения
   § 7. Общая теорема

   Глава 9. Кубический и биквадратичный законы взаимности
   § 1. Кольцо
   § 2. Кольца классов вычетов
   § 3. Характер кубического вычета
   § 4. Доказательство кубического закона взаимности
   § 5. Другое доказательство кубического закона взаимности
   § 6. Характер кубического вычета числа 2
   § 7. Биквадратичный закон взаимности: предварительные сведения
   § 8. Символ вычета степени 4
   § 9. Биквадратичный закон взаимности
   § 10. Рациональный биквадратичный закон взаимности
   § 11. Построение правильных многоугольников
   § 12. Кубические суммы Гаусса и проблема Куммера

   Глава 10. Уравнения над конечными полями
   § 1. Аффинное пространство, проективное пространство и многочлены
   § 2. Теорема Шевалле
   § 3. Суммы Гаусса и Якоби над конечными полями

   Глава 11. Дзета-функция
   § 1. Дзета-функция проективной гиперповерхности
   § 2. След и норма в конечных полях
   § 3. Рациональность дзета-функции гиперповерхности
   § 4. Доказательство соотношения Хассе-Дэвенпорта
   § 5. Последняя запись

   Глава 12. Теория алгебраических чисел
   § 1. Алгебраические подготовительные результаты
   § 2. Однозначность разложения на множители в полях алгебраических чисел
   § 3. Ветвление и степень

   Глава 13. Квадратичные и круговые поля
   § 1. Квадратичные числовые поля
   § 2. Круговые поля
   § 3. Снова квадратичный закон взаимности

   Глава 14. Соотношение Штикельбергера и закон взаимности Эйзенштейна
   § 1. Норма идеала
   § 2. Символ степенного вычета
   § 3. Соотношение Штикельбергера
   § 4. Доказательство соотношения Штикельбергера
   § 5. Доказательство закона взаимности Эйзенштейна
   § 6. Три приложения

   Глава 15. Числа Бернулли
   § 1. Числа Бернулли; определения и приложения
   § 2. Сравнения для чисел Бернулли
   § 3. Теорема Хербранда

   Глава 16. L-функции Дирихле
   § 1. Дзета-функция
   § 2. Частный случай
   § 3. Характеры Дирихле
   § 4. L-функции Дирихле
   § 5. Ключевой шаг
   § 6. Значения L(s,х) в отрицательных целых числах

   Глава 17. Диофантовы уравнения
   § 1. Общие сведения и первые примеры
   § 2. Метод спуска
   § 3. Теорема Лежандра
   § 4. Теорема Софи Жермен
   § 5. Уравнение Пелля
   § 6. Сумма двух квадратов
   § 7. Сумма четырех квадратов
   § 8. Уравнение Ферма: экспонента 3
   § 9. Кубические кривые с бесконечным числом рациональных точек
   § 10. Уравнение у2 = х3 + к
   § 11. Первый случай гипотезы Ферма для регулярных показателей
   § 12. Диофантовы уравнения и диофантово приближение

   Глава 18. Эллиптические кривые
   § 1. Общие замечания
   § 2. Локальная и глобальная дзета-функции эллиптической кривой
   § 3. у2 - х3 + D, локальный случай
   § 4. у2 = х3 - Dx, локальный случай
   § 5. L-функции Гекке
   § 6. у2 = х3 - Dx, глобальный случай
   § 7. у2 = х3 + D, глобальный случай
   § 8. Заключительные замечания

Краткая аннотация книги

   Учебное пособие по теории чисел, написанное известными математиками из Канады и США. От читателя не требуется предварительных знаний. Авторы начинают с простейших понятий и примеров и доводят изложение до современных проблем и результатов теории чисел. В книге приведено много задач различной трудности вместе с указаниями для их решения. Для математиков разной квалификации в качестве введения в предмет, для преподавателей и студентов вузов.

   Теория алгебраических чисел возникла во второй половине XIX в. из целого ряда не связанных друг с другом задач теории чисел. Первое место среди них занимали задачи о диофантовых уравнениях, таких, как уравнение Ферма или вопросы о представимости чисел квадратичными формами. Другой не менее важный круг идей, стимулировавший развитие алгебраической теории чисел - теория делимости и законы разложения простых чисел в кольцах целых алгебраических чисел. Впрочем, отделить друг от друга конкретные факты, идеи и конструкции, приведшие к созданию теории алгебраических чисел, вряд ли возможно. Классический период теории завершается созданием теории полей классов, описывающей абелевы расширения полей алгебраических чисел и законы разложения в них.

   Существует много учебных изложений теории алгебраических чисел. Предлагаемая вниманию читателя книга отличается элементарностью и насыщенностью конкретными фактами и примерами. Ряд вопросов, например, кубический и биквадратичный законы взаимности излагаются в учебной литературе с такой степенью подробности, пожалуй, впервые. Помимо основ теории авторы включили в книгу ряд глав, излагающих более современные достижения, связанные с применением методов алгебраической геометрии к диофантовым уравнениям. Сюда относятся определение дзета-функций алгебраических многообразий, гипотеза Римана - Вейля для многообразий над конечными полями, связь группы рациональных точек на эллиптической кривой с ее дзета-функцией. Подробно разобранные частные случаи являются хорошим введением в общую теорию, с которой читатель может познакомиться по сочинениям более общего характера (см. библиографические указания в конце глав).

   Последние годы принесли теории чисел заметное оживление: доказана гипотеза Морделла о рациональных точках на кривых рода больше 1, первый случай теоремы Ферма решен для бесконечного числа простых показателей, найдены первые примеры эллиптических кривых с конечной группой Шафаревича. Можно не сомневаться, что книга Айерлэнда и Роузена будет ценным подспорьем для начинающих математиков, же лающих принять участие в дальнейшем развитии теории чисел.

   Эта книга является пересмотренным и сильно расширенным вариантом нашей книги "Элементы теории чисел", опубликованной в 1972 году. Как и в первой книге, основная аудитория, к которой мы обращаемся, состоит из студентов-математиков старших курсов и аспирантов. Мы предполагаем некоторое знакомство с материалом стандартного курса по абстрактной алгебре. Большую часть гл. 1-11 можно читать даже без такой предварительной подготовки, используя небольшое количество дополнительного материала. Последующие главы предполагают некоторое знание теории Галуа, а для гл. 16 и 18 необходимо знакомство с теорией функций комплексной переменной.

   Теория чисел - древний предмет, и содержание его обширно. Для всякой вводной книги следует в силу необходимости произвести очень строгий отбор возможных тем из их громадного многообразия. Мы сосредотачиваемся на темах, связанных с теорией алгебраических чисел и арифметической алгебраической геометрией. Тщательный отбор материала дает нам возможность изложить некоторые довольно сложные вопросы без больших технических приготовлений. Значительная часть этого материала является классической в том смысле, что она была открыта в XIX веке и ранее, но этот материал и современен, так как тесно связан с важными исследованиями, продолжающимися вплоть до настоящего времени.

   В гл. 1-5 мы обсуждаем простые числа, однозначное разложение на простые множители, арифметические функции, сравнения и квадратичный закон взаимности. Предварительных знаний здесь требуется очень мало. Удивительно, однако, как малая толика теории групп и колец прирносят в излагаемый материал неожиданный порядок. Например, многие разрозненные результаты оказываются частями ответа на естественный вопрос: какова структура группы единиц в кольце Z/nZ. Законы взаимности составляют основную тему последующих глав. Квадратичный закон взаимности, красивый сам по себе, является первым в серии, завершающейся законом взаимности Артина - одним из основных достижений теории алгебраических чисел. Выбранный нами путь изложения после биквадратичного закона взаимности проходит через формулировки и доказательства кубического и биквадратичного законов взаимности. В качестве подготовки к этим вопросам развивается техника теории алгебраических чисел: алгебраические числа и алгебраические целые числа, конечные поля, разложение простых чисел и т. д. Другим важным инструментом в этом исследовании (и в других тоже!) является теория сумм Гаусса и Якоби. Этот материал изложен в гл. 6-9.

   Вторая главная тема - диофантовы уравнения, сначала над конечными полями, а затем над полем рациональных чисел. Обсуждение полиномиальных уравнений начинается в гл. 8 и 10 и достигает кульминации в гл. 11 при изложении части статьи "Число решений уравнений над конечными полями" А. Вейля. Опубликованная в 1948 году, эта статья оказала очень сильное влияние на современное развитие как алгебраической геометрии, так и теории чисел. В гл. 17 и 18 мы рассматриваем диофантовы уравнения над полем рациональных чисел. В гл. 17 излагаются многие стандартные темы, начиная с сумм квадратов и кончая последней теоремой Ферма. Однако, используя предыдущий материал, мы можем трактовать некоторые из этих вопросов с новой точки зрения. Глава 18 посвящена арифметике эллиптических кривых. Она отличается от остальных глав тем, что это в основном обзор, содержащий много определений и утверждений, но мало доказательств. Тем не менее, концентрируя внимание на некоторых важных частных случаях, мы надеемся приобщить читателей к красоте достигнутого в этой области, где проделана большая работа, но осталось много тайн.

   Третья (и последняя) из главных тем - дзета-функции. В гл. 11 мы обсуждаем конгруэнц-дзета-функции, связанные с многообразиями над конечными полями. В гл. 16 рассматриваются дзета-функции Римана и L-функции Дирихле. В гл. 18 излагаются результаты о дзета-функциях алгебраических кривых над полем рациональных чисел и L-функциях Гекке. Дзета-функции сводят обширную арифметическую информацию к одной функции и дают возможность применить мощные методы анализа к теории чисел. На протяжении всей книги мы уделяем большое внимание истории излагаемых вопросов. В замечаниях в конце каждой главы мы приводим краткие исторические справки и ссылки на литературу. Обширная библиография затрагивает многие области, как классические, так и современные. Мы хотим снабдить читателя обильным материалом для дальнейшего изучения.

 



 

 

Наши ссылки на веб-страницы, можно скопировать html-код ссылки


Книги по математике и физике, программы HTML, компьютерные технологии

Скачать книги - математика, бесплатно книги по высшей математике и физике по Интернет

   Примечание. Удобная текстовая ссылка для форумов, блогов, цитирования материалов веб-сайта, код html можно скопировать и просто вставить в Ваши веб-страницы при цитировании материалов нашего веб-сайта. Материал носит неофициальный характер и приведен для ознакомления. Прямые ссылки на файлы книг запрещены.

 

   Вы можете использовать скачанные с веб-сайта книги и другие материалы только для личного ознакомления. Авторское право авторов книг и любых электронных приложений к ним (в том числе фото, видео, рукописи, архивы и прочее) не подлежит патентованию и подобным "искусственным" дополнительным мерам защиты авторского права - не патентуют рукописи, фотографии, видеоматериалы, формулы, графики, сводные таблицы, тексты монографий, черновики и оригинальные издания вне зависимости от того, находятся ли они в частных или государственных архивах любой страны. Вне зависимости от того, есть ли у книги или рукописи и автора какие-либо коды или нет, подписаны они или нет, известен автор или нет, является он(а) гражданином Украины или иностранцем - запрещено явным образом присваивать чужое авторское право и ставить чужие ФИО в чужих работах и трудах (в случае неуказанного, неустановленного или сомнительного авторства наиболее предпочтительно использовать анонимность - это корректно, этично и непротивозаконно, так как в этом случае истинные владельцы будут поданы в розыск и объективно установленны в своих правах независимой комиссией).

   Сегодня электронный вариант публикации приравнен к печатной бумажной форме распространения информации (требования аналогичны). Наиболее предпочтительными являются международные форматы публикаций PDF и DJVU (они лучше всего защищены от сторонних модификаций - изменения в них могут внести только профессионалы), допускаются и другие общепринятые и широко распространенные форматы электронного представления авторской или смежной информации. Помните, что один человек сам по себе ничего не делает и не решает - у любого автора любого издания есть коллеги, единомышленники, соратники, кураторы, преподаватели, наставники, идейные, политические и научные руководители и вдохновители, предшественники и приемники, завистники и плагиаторы, желающие незаконно "упасть на хвост и поехать", "присоседиться к работе" и "присоединиться". Чем серьезнее ученый и чем более масштабные объективные и фундаментальные работы он(а) реально ведет, тем большее количество мошенников и аферистов желает незаконно "находиться" и "быть рядом" с таким человеком, его деньгами, премиями, подарками и другими объективными поощрениями. Поэтому все подобные аферисты и мошенники, как и их голословные заявления, подлежат строгой проверке на практике как гласными, так и негласными методами государственного, общественного и политического независимого контроля (в том числе судебного и силового).

   Вам разрешается использовать электронные публикации и иные материалы только для личного ознакомления. Никаких дополнительных прав и свобод (в том числе авторских и коммерческих прав, в том числе права на коммерческое распространение) получение и обладание электронной и иной публикации и материалов Вам не предоставляет. Вам не дает никаких прав, в т.ч. авторских и смежных прав, личное знакомство с автором и правообладателем, совместное проживание, учеба или работа, семейный и иной статус, совместное хобби и увлечения, посещение одних и тех же мероприятий, встречи, конфликты и даже отсутствие таковых. Вы не имеете право продавать электронные публикации и иные авторские материалы, отчуждать их от владельца и извлекать материальную выгоду от владения электронной и иной формой представления авторской информации. Отчуждение авторского научного и творческого права запрещено вне зависимости от срока давности издания, способа и места его хранения, разрекламированности, известности или неизвестности и даже анонимности автора и соавтора, гражданства, здоровья, болезни и любого другого объективного статуса реального правообладателя. Запрещены фото- и видеомонтажи, врезки и изъятия, компиляция из сторонних источников и другие формы заведомого мошенничества. Запрещено иностранцам без признанной в Украине и документально подтвержденной профессии, без легитимных виз и специальных персонифицированных межгосударственных соглашений занимать рабочие места граждан Украины на территории Украины и во всех предприятиях, которые являются собственностью Украины и ее граждан вне зависимости от места регистарции и дислокации этих предприятий. Запрещено работать без рабочих виз на территории Украины гражданам и подданым стран, с которыми у Украины установлен визовый режим (в частности, сюда входят ВСЕ страны "Евросоюза" - т.н. "шенгенская зона", Израиль, Великобритания и пр.).

   Любое авторское право (особенно научное и творческое) никогда не патентуется, не отчуждается ни при каких обстоятельствах, не продается и не покупается и является неотъемлимым от его создателя при любых обстоятельствах - патентуются только уникальные инженерные и программные разработки, авторские алгоритмы, изобретения и подобные материалы, содержащие более 60% объективно признанных независимой государственной экспертной комиссией авторских инноваций. Незаконным является присвоение себе чужих архивов, черновиков, заметок, аудио, фото и видеоматериалов (даже если вы не знаете их автора или же непосредственно знакомы с создателем и правообладателем, это ничего не решает). Научное и творческое авторское право не отчуждается от автора и создателя и никогда не делегируется третьим лицам (особенно без профессии и неконтрафактных документов) - оно является наиболее строгим авторским правом, неотделимым от своего создателя, и не подлежит передаче, купле и продаже ни при каких обстоятельствах. Оно только может быть передано в возмездное или безвозмездное пользование БЕЗ ПРАВА НА ОТЧУЖДЕНИЕ. Главной особенностью научного и творческого авторского права является его обязательная частичная передача в безвозмездное пользование широким слоям заинтересованного населения - на этом сайте все научные книги бесплаты и свободны для скачивания без паролей, кодов и ограничений (я как владелец этого сайта и интернет-хостинг-провайдеры не несем ответственность за деятельность третьих лиц, возможные сбои и технические нарушения интернет-связи при пользовании сайтами по вине третьих лиц). Никаких искусственных препятствий, ограничений скорости, других "негативов" и препятствий мы не устанавливаем.

   Государство Украина имеет достаточную базу для обеспечения научных работ и научных исследований по всем законным направлениям научной деятельности. C 2010 г. в Украине любая наука и научные исследования являются объектами строгой государственной монополии и требуют наличия не только документально признанной в Украине профессии, но и высшего государственного образования, официально признанного в Украине.