Электронная библиотека
Программисту веб-дизайнеру
Другие материалы
Бесплатная электронная библиотека. Скачать книги DJVU, PDF бесплатно
В.И. Арнольд, Теория катастроф
Бесплатно скачать книгу, объем 2.06 Мб, формат .djvu (Москва, обзор, 1990)
1. Особенности, бифуркации и катастрофы
2. Теория особенностей Уитни
3. Применения теории Уитни
4. Машина катастроф
5. Бифуркации положений равновесия
6. Потеря устойчивости равновесных и автоколебательных режимов
7. Особенности границы устойчивости и принцип хрупкости хорошего
8. Каустики, волновые фронты и их метаморфозы
9. Крупномасштабное распределение вещества во Вселенной
10. Особенности в задачах оптимизации: функция максимума
11. Особенности границы достижимости
12. Гладкие поверхности и их проектирования
13. Задача об обходе препятствия
14. Симплектическая и контактная геометрии
15. Комплексные особенности
16. Мистика теории катастроф
Добавление. Предшественники теории катастроф
Краткая аннотация книги
Математическое описание катастроф - скачкообразных изменений, возникающих в виде внезапного ответа системы на плавное изменение внешних условий, дается теориями особенностей и бифуркаций. Их применения к конкретным задачам в разных областях науки вызвали много споров. В книге рассказывается о том, что же такое теория катастроф и почему она вызывает такие споры. Изложены результаты математических теорий особенностей и бифуркаций. Новое издание дополнено обзором недавних достижений теории перестроек, библиографией и задачником. Рассчитана на научных работников, преподавателей, студентов и всех, кто интересуется современной математикой.
ПРЕДИСЛОВИЕ К ТРЕТЬЕМУ ИЗДАНИЮ
Математическое описание мира основано на тонкой игре непрерывного и дискретного. Дискретное более заметно. "Функции, как и живые существа, характеризуются своими особенностями", как заметил П. Монтель. Особенности, бифуркации и катастрофы - термины, описывающие возникновение дискретных структур из гладких, непрерывных.
За последние 30 лет теория особенностей достигла высокого технического уровня, главным образом благодаря работам X. Уитни (1955), Р. Тома (1959) и Дж. Мазера (1965). Сейчас это - мощный новый математический аппарат, имеющий широкую область приложений в естествознании и технике (в особенности в комбинации с теорией бифуркаций, восходящей к диссертации А. Пуанкаре 1879 г. и далеко развитой А. А. Андроновым, 1933).
Цель этой книги - объяснить, как этот аппарат работает, читателю-нематематику. Однако я надеюсь, что и специалисты найдут здесь новые для себы факты и идеи.
Одни считают теорию катастроф частью теории особенностей, другие, наоборот, включают теорию особенностей в теорию катастроф. Чтобы избежать схоластического диспута, я называю катастрофистами тех, кто сам заявляет, что его работа относится к теории катастроф, предоставляя тем самым свободный выбор между терминами "особенности", "бифуркации" и "катастрофы" самим авторам соответствующих работ.
Первые разделы этой книжки впервые появились в виде статьи в журнале "Природа" (1979, № 10). Французский перевод с комментариями Р. Тома был опубликован в 1980 г. в сборнике переводов "Математика". Русские издания 1981 и 1983 г. и английские 1984 и 1986 г. каждое содержало новые разделы. Настоящее, наиболее полное изданиег во многом отличается от предыдущих. Добавлены сведения об истории теории катастроф, расширены разделы о геометрических приложениях, о теории бифуркаций и о приложениях к "мягкому моделированию", включая исследование перестроек. Быть может, интересно отметить, что мои попытки, начиная с 1986 г., опубликовать анализ перестроек с точки зрения теории особенностей увенчались успехом лишь теперь, несомненно вследствие самой перестройки.
Из более математических вопросов, включенных в новое издание, отмечу здесь теорию затягивания потери устойчивости, результаты о нормальных формах неявных дифференциальных уравнений и релаксационных колебаний, теорию внутреннего рассеяния волн в неоднородной среде, теорию граничных особенностей и несовершенных бифуркаций, описание каустики исключительной группы Ли в терминах геометрии поверхности с краем и появление группы симметрии правильного четырехмерного 600-гранника в задачах вариационного исчисления и оптимального управления, теорию перестроек ударных волн, универсальность каскадов удвоений, утроений и т. д.
Автор благодарен профессорам Р. Тому, М. Берри и Дж. Наю за полезные замечания о предыдущих изданиях этой книжки. Том указал, что термин "теория катастроф" изобретен К. Зиманом, а термин "аттрактор", заменивший прежнее "притягивающее множество", употреблялся уже С. Смейлом (тогда как в первых изданиях эти заслуги были приписаны Тому). По совету Beppi; я включил в это издание аннотированную библиографию (для читателей-специалистов, которые найдут в ней источники большинства сообщаемых здесь сведений, за исключением небольшого числа результатов, впервые опубликованных в этой книжке с любезного согласия авторов). Профессор Най заметил, что некоторые очень интересные топологические причины препятствуют реализации ряда перестроек каустик (таких, как рождение "летающей тарелочки") в оптике, для каустик, порожденных уравнением эйконала или Гамильтона - Якоби с выпуклым по импульсам гамильтонианом.
Я научился теории особенностей в четырехчасовой беседе с Б. Мореном после его замечательного доклада об особенностях Уитни и Морена на семинаре Тома в 1965 г. Морен объяснил мне тогда формулировку фундаментальной теоремы Мазера об устойчивости, анонсированной Мазером в только что полученном Моречом письме (доказательство - не такое, как у Мазера, - я нашел позже, в тот же день). Неопубликованная работа Мазера 1968 г. о правой эквивалентности к несчастью (или к счастью) не была мне известна, и я осознал взаимоотношение между аналогичной работе Мазера работой Г. Н. Тюриной 1967 г. (опубликованной в 1968 г.) и моей работой 1972 г. об "A, D, Е", посвященной памяти Тюриной, только после того, как Дж. Милнор разъяснил мне его.
Ни в 1965 г., ни позже я никогда не был в состоянии понять ни слова в собственных докладах Тома о катастрофах. Однажды он описал их мне (по-французски?) как "бла-бла-бла", когда я спросил его, в начале семидесятых годов, доказал ли он свои утверждения. Даже сегодня я не знаю, справедливо ли утверждение Тома о локальной топологической классификации бифуркаций в градиентных динамических системах, зависящих от четырех параметров (в исправленной форме, ибо контрпример к исходной "теореме" Тома, анонсированной в Topology в 1969 г., был опубликован Дж. Гукенхей-мером в 1973 г., и "великолепная семерка", столь превозносимая катастрофистами, должна быть увеличена, чтобы теорема стала верной). Локальная топологическая классификация бифуркаций в градиентных динамических системах, зависящих от трех параметров, недавно получена Б. А. Хесиным (1985). Число топологически различных бифуркаций оказалось конечным, но значительно большим, чем предполагал Том, пропустивший ряд бифуркаций. Конечно ли число таких бифуркаций при четырех параметрах (Том утверждал, что их семь) - вопрос, до сих пор не решенный.
Я не в состоянии также обсуждать и философские или поэтические декларации Тома, сформулированные таким образом, чтобы нельзя было решить, справедливы они или нет (в стиле, типичном для средневековой науки до Декарта и Бэкона или даже Бэконов). К счастью, фундаментальные математические открытия великого тополога независимы от какой бы то ни было иррациональной философии.
Пуанкаре сказал как-то, что математики не уничтожают препятствия, мешающие им, но просто отодвигают их за границы своей науки. Отодвинем же эти специфические препятствия как можно дальше от границ науки.,, в область бессознательного и иррационального.
Первые сведения о теории катастроф появились в западной печати около 1970 г. В журналах типа "Ньюс уик" сообщалось о перевороте в математике, сравнимом разве что с изобретением Ньютоном дифференциального и интегрального исчисления. Утверждалось, что новая наука - теория катастроф - для человечества гораздо ценнее, чем математический анализ: в то время как ньютоновская теория позволяет исследовать лишь плавные, непрерывные процессы, теория катастроф дает универсальный метод исследования всех скачкообразных переходов, разрывов, внезапных качественных изменений. Появились сотни научных и околонаучных публикаций, в которых теория катастроф применяется к столь разнообразным объектам, как, например, исследования биения сердца, геометрическая и физическая оптика, эмбриология, лингвистика, экспериментальная психология, экономика, гидродинамика, геология и теория элементарных частиц. Среди опубликованных работ по теории катастроф есть исследования устойчивости кораблей, моделирования деятельности мозга и психических расстройств, восстаний заключенных в тюрьмах, поведения биржевых игроков, влияния алкоголя на водителей транспортных средств, политики цензуры по отношению к эротической литературе.
В начале семидесятых годов теория катастроф быстро сделалась модной, широко рекламируемой теорией, напоминающей универсальностью своих претензий псевдонаучные теории прошлого века.
Математические статьи основоположника теории катастроф Р. Тома были переизданы массовым тиражом в карманной серии - событие, которого не было в математическом мире со времени возникновения кибернетики, у которой теория катастроф заимствовала многие приемы саморекламы.
Вслед за панегириками теории катастроф появились в более трезвые критические работы; некоторые из них также печатались в рассчитанных на широкого читателя изданиях под красноречивыми названиями вроде "А король-то - голый". Сейчас имеется уже много статей, специально посвященных критике теории катастроф. (См., например, обзор Дж. Гуккенхеймера "Споры о катастрофах" и пародию на критику теории катастроф.)
Источниками теории катастроф являются теория особенностей гладких отображений Уитни и теория бифуркаций динамических систем Пуанкаре и Андронова.
Теория особенностей - это грандиозное обобщение исследования функций на максимум и минимум. В теории Уитни функции заменены отображениями, т. е. наборами нескольких функций нескольких переменных.
Слово "бифуркация" означает раздвоение и употребляется в широком смысле для обозначения всевозможных качественных перестроек ЕЛИ метаморфоз различных объектов при изменении параметров, от которых они зависят.
Катастрофами называются скачкообразные изменения, возникающие в виде внезапного ответа системы на плавное изменение внешних условий. Чтобы понять, что такое теория катастроф, нужно вначале познакомиться с элементами теории особенностей Уитни.
Примечание. Сохраняйте книги на планшет или смартфон и скачивайте их с Вашего AMP планшета или смартфона на компьютер. Удобное скачивание книг через мобильный планшет или смартфон (в память устройства) и на Ваш компьютер через AMP интерфейс. Быстрый Интернет без излишних тэгов. Материал носит неофициальный характер и приведен для ознакомления. Прямые ссылки на файлы книг запрещены.